6.△ABC在空間直角坐標(biāo)系中的位置及坐標(biāo)如圖所示,則AC邊上的中線長為$\frac{\sqrt{2}}{2}$.

分析 先求出AC的中點坐標(biāo),利用兩點間距離公式能求出AC邊上的中線長.

解答 解:如圖,∵A(2,0,0),C(0,1,1),B(1,1,0)
∴AC的中點為(1,$\frac{1}{2},\frac{1}{2}$),
∴AC邊上的中線長:$\sqrt{(1-1)^{2}+(1-\frac{1}{2})^{2}+(0-\frac{1}{2})^{2}}$=$\frac{\sqrt{2}}{2}$.
故答案為:$\frac{\sqrt{2}}{2}$.

點評 本題考查線段長的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意中點坐標(biāo)公式及兩點間距離公式的合理運用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若數(shù)列{an}的前n項之積等于n2+3n+2,(n∈N+),則數(shù)列{an}的通項公式為an=$\left\{\begin{array}{l}{6,n=1}\\{\frac{n+2}{n},n≥2}\end{array}\right.$.n∈N*

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知四棱錐P-ABCD的底面為直角梯形,AB∥DC,∠DAB=90°,PA⊥底面ABCD,PA=AD=DC=$\frac{1}{2}$AB=1,PM=$\frac{1}{2}$MB.
(I)證明:面PAD⊥面PCD;
(2)證明:PD∥平面MAC;
(3)求三棱錐P-AMC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2sinωπx,且函數(shù)f(x)的圖象與y=-2的圖象的相鄰兩交點的橫坐標(biāo)之差為2
(1)求函數(shù)f(x)的解析式;
(2)將函數(shù)f(x)的圖象的橫坐標(biāo)擴大π倍得到函數(shù)g(x)的圖象,若函數(shù)y=g(x+$\frac{π}{3}$)-m在[-$\frac{2π}{3}$,$\frac{5π}{6}$]上的最小值為2,求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若log2x+log2y=2,則$\frac{1}{x}$+$\frac{2}{y}$的最小值為(  )
A.1B.$\sqrt{2}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.從區(qū)間[0,1]隨機抽取2n個數(shù)x1,x2,…,xn,y1,y2,…,yn,構(gòu)成n個數(shù)對(x1,y1),(x2,y2),…,(xn,yn),其中兩數(shù)的平方和小于1的數(shù)對共有m個,則用隨機模擬的方法得到的圓周率π的近似值為$\frac{4m}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.底邊和側(cè)棱長均為$\sqrt{3}$的三棱錐的表面積為3$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若規(guī)定:
①{m}表示大于m的最小整數(shù),例如{3}=4,{-2.4}=-2
②[m]表示不大于m的最大整數(shù),例如:[5]=5,[-3.6]=-4,則使等式2{x}-[x]=4成立的整數(shù)x=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若實數(shù)x,y滿足$\left\{\begin{array}{l}x-y-2≤0\\ x-3y≥0\\ y≥0\end{array}\right.$,則z=x-2y的最大值為( 。
A.-2B.0C.2D.4

查看答案和解析>>

同步練習(xí)冊答案