4.若規(guī)定:
①{m}表示大于m的最小整數(shù),例如{3}=4,{-2.4}=-2
②[m]表示不大于m的最大整數(shù),例如:[5]=5,[-3.6]=-4,則使等式2{x}-[x]=4成立的整數(shù)x=2.

分析 根據(jù)題意①{m}表示大于m的最小整數(shù),②[m]表示不大于m的最大整數(shù),化簡所求的表達式,推出結(jié)果即可.

解答 解:根據(jù)題意,①{m}表示大于m的最小整數(shù),
②[m]表示不大于m的最大整數(shù),
得使等式2{x}-[x]=4成立的整數(shù)x應(yīng)滿足:2(x+1)-x=4,
∴x=2.
故答案為:2.

點評 本題考查函數(shù)與方程的應(yīng)用,解決此題的關(guān)鍵是理解題意,這里注意x是整數(shù).

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

5.作出數(shù)列-$\frac{1}{2}$,$\frac{1}{4}$,-$\frac{1}{8}$,$\frac{1}{16}$,…,(-$\frac{1}{2}$)n,…的圖象,并分析數(shù)列的增減性.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.△ABC在空間直角坐標系中的位置及坐標如圖所示,則AC邊上的中線長為$\frac{\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=-1-\frac{\sqrt{3}}{2}t}\\{y=\sqrt{3}+\frac{1}{2}t}\end{array}\right.$(t為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立極坐標系,圓C的坐標方程為ρ=4sin(θ-$\frac{π}{6}$).
(1)求圓C的直角坐標方程;
(2)若P(x,y)是直線l與圓C及內(nèi)部的公共點,求$\sqrt{3}$x+y的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)△ABC的內(nèi)角A,B,C的對邊分別為a,b,c.已知$\frac{sin(A-B)}{sin(A+B)}$=$\frac{b+c}{c}$.
(1)求角A的大。
(2)當a=6時,求△ABC面積的最大值,并指出面積最大時△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.過點(1,2),且與直線x+2y+2=0垂直的直線方程為( 。
A.2x-y=0B.x-2y+3=0C.2x+y-4=0D.x+2y-5=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

16.${({{x^3}+\frac{1}{{2\sqrt{x}}}})^5}$的展開式中x8的系數(shù)為$\frac{5}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖所示,某公園內(nèi)從點A處出發(fā)有兩條道路AB,AC連接到南北方向的道路BC.從點A處觀察點B和點C的方位角分別是∠PAB和∠PAC,且cos∠PAB=$\frac{7}{25}$,cos∠PAC=$\frac{3}{5}$,AB=2.5km.
(1)求AC和BC;
(2)現(xiàn)有甲乙二人同時從點A處出發(fā),甲以5km/h的速度沿道路AC步行,乙以6km/h的速度沿A-B-C路線步行,問半小時后兩人的距離是多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知等差數(shù)列{an}的前n項和為Sn,若數(shù)列{Sn}有唯一的最大項S3,Hn=S1+2S2+3S3+…+nSn,則(  )
A.S5•S6<0B.H5•H6<0
C.數(shù)列{an}、{Sn}都是單調(diào)遞減數(shù)列D.H6可能是數(shù)列{Hn}最大項

查看答案和解析>>

同步練習冊答案