14.已知雙曲線的方程為$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過左焦點F1作斜率為$\frac{\sqrt{3}}{3}$的直線交雙曲線的右支于點P,且y軸平分線段F1P,則雙曲線的離心率為(  )
A.$\sqrt{3}$B.$\sqrt{5}$+1C.$\sqrt{2}$D.2+$\sqrt{3}$

分析 先求過焦點F1(-c,0)的直線l的方程,進(jìn)而可得P的坐標(biāo),代入雙曲線方程,結(jié)合幾何量之間的關(guān)系,即可求出雙曲線的離心率.

解答 解:由題意,過焦點F1(-c,0)的直線l的方程為:y=$\frac{\sqrt{3}}{3}$(x+c),
∵直線l交雙曲線右支于點P,且y軸平分線段F1P,
∴直l交y軸于點Q(0,$\frac{\sqrt{3}}{3}$c).
設(shè)點P的坐標(biāo)為(x,y),則x+c=2c,y=$\frac{2\sqrt{3}}{3}$c,∴P點坐標(biāo)(c,$\frac{2\sqrt{3}}{3}$c),
代入雙曲線方程得:$\frac{{c}^{2}}{{a}^{2}}-\frac{(\frac{2\sqrt{3}}{3}c)^{2}}{^{2}}$=1
又∵c2=a2+b2,∴c2=3a2,∴c=$\sqrt{3}$a,
∴e=$\frac{c}{a}$=$\sqrt{3}$
故選:A.

點評 本題考查雙曲線的幾何性質(zhì),考查學(xué)生的計算能力,確定P的坐標(biāo)是關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.設(shè)函數(shù)f(x)=x2-2x-3,若從區(qū)間[-2,4]上任取一個實數(shù)x0,則所選取的實數(shù)x0滿足f(x0)≤0的概率為( 。
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.函數(shù)f(x)=x2-sin|x|在[-2,2]上的圖象大致為(  )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.若點P是△ABC的外心,且$\overrightarrow{PA}$+$\overrightarrow{PB}$+λ$\overrightarrow{PC}$=$\overrightarrow{0}$,∠C=120°,則實數(shù)λ的值為(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.方程$\frac{x^2}{3-k}+\frac{y^2}{k+3}=1$表示橢圓,則k的取值范圍是{k|-3<k<3且k≠0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=ex-x2+a,x∈R,曲線y=f(x)在(0,f(0))處的切線方程為y=bx.
(1)求f(x)的解析式;
(2)當(dāng)x∈R時,求證:f(x)≥-x2+x;
(3)若f(x)≥kx對任意的x∈(0,+∞)恒成立,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在平面直角坐標(biāo)系xoy中,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosθ\\ y=tsinθ\end{array}\right.$(t為參數(shù),0≤θ<π),以坐標(biāo)原點為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=-4cosα,圓C的圓心到直線l的距離為$\frac{3}{2}$
(1)求θ的值;
(2)已知P(1,0),若直線l與圓C交于A,B兩點,求$\frac{1}{{|{PA}|}}+\frac{1}{{|{PB}|}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.某學(xué)校舉行物理競賽,有8名男生和12名女生報名參加,將這20名學(xué)生的成績制成莖葉圖如圖所示,成績不低于80分的學(xué)生獲得“優(yōu)秀獎”,其余獲“紀(jì)念獎”.
(Ⅰ)求出8名男生的平均成績和12名女生成績的中位數(shù);
(Ⅱ)按照獲獎類型,用分層抽樣的方法從這20名學(xué)生中抽取5人,再從選出的5人中任選3人,求恰有1人獲“優(yōu)秀獎”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知某中學(xué)高三文科班學(xué)生的數(shù)學(xué)與地理的水平測試成績抽樣統(tǒng)計如表:
x
人數(shù)
y
ABC
A144010
Ba36b
C28834
若抽取學(xué)生n人,成績分為A(優(yōu)秀),B(良好),C(及格)三個等次,設(shè)x,y分別表示數(shù)學(xué)成績與地理成績,例如:表中地理成績?yōu)锳等級的共有14+40+10=64(人),數(shù)學(xué)成績?yōu)锽等級且地理成績?yōu)镃等級的有8人.已知x與y均為A等級的概率是0.07.
(1)設(shè)在該樣本中,數(shù)學(xué)成績的優(yōu)秀率是30%,求a,b的值;
(2)已知a≥8,b≥6,求數(shù)學(xué)成績?yōu)锳等級的人數(shù)比C等級的人數(shù)多的概率.

查看答案和解析>>

同步練習(xí)冊答案