12.?dāng)?shù)列1,4,7,10,…,的第8項(xiàng)等于22.

分析 利用等差數(shù)列的通項(xiàng)公式求解.

解答 解:∵數(shù)列1,4,7,10,…中,
a1=1,d=3,
∴a8=1+3×(8-1)=22.
故答案為:22.

點(diǎn)評(píng) 本題考查等差數(shù)列的通項(xiàng)公式,是基礎(chǔ)題,等差數(shù)列是常見(jiàn)數(shù)列的一種,數(shù)列從第二項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)常數(shù),已知等差數(shù)列的首項(xiàng)a1,公差d,那么第n項(xiàng)為an=a1+(n-1)d,或者已知第m項(xiàng)為am,則第n項(xiàng)為an=am+(n-m)d.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,a8=1,S16=0,當(dāng)Sn取最大值時(shí)n的值為( 。
A.7B.8C.9D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知直線AB的方程為$\sqrt{3}$x+y+1=0,則直線AB的傾斜角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.點(diǎn)O是△ABC所在平面上一點(diǎn),且滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,則點(diǎn)O為△ABC的( 。
A.外心B.內(nèi)心C.重心D.垂心

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知向量$\overrightarrow{a}$與$\overrightarrow$的夾角為60°,且|$\overrightarrow{a}$|=|$\overrightarrow$|=2,那么$\overrightarrow$•(2$\overrightarrow{a}$-$\overrightarrow$)的值為( 。
A.-8B.-6C.4D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知向量$\vec a$=(4,2),$\vec b$=(-1,2),$\vec c$=(2,m).
(1)若$\vec a$•$\vec c$<m2,求實(shí)數(shù)m的取值范圍;
(2)若向量$\vec a+\vec c$與$\vec b$平行,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某程序框圖如圖所示,執(zhí)行該程序,若輸入的N=3,則輸出的i等于( 。
A.6B.7C.8D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.已知f(x)=a•2x+b•3x,其中a,b為實(shí)數(shù),ab≠0.
(1)判斷函數(shù)f(x)的單調(diào)性;
(2)若ab<0,求使f(x+2)>f(x)成立的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知等差數(shù)列{an}的公差和等比數(shù)列{bn}的公比都是d,又知d≠1,且a1=b1,a4=b4,a10=b10
(1)求a1及d的值;
(2)b16是不是{an}中的項(xiàng)?

查看答案和解析>>

同步練習(xí)冊(cè)答案