設(shè)f(x)=
1
3
x3+
1
2
(b-1)x2
-bx,b∈R
(1)當(dāng)b=1時(shí),求f(x)的單調(diào)區(qū)間;
(2)當(dāng)f(x)在R上有且僅有一個(gè)零點(diǎn)時(shí),求b的取值范圍.
考點(diǎn):利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,函數(shù)的零點(diǎn)
專(zhuān)題:計(jì)算題,導(dǎo)數(shù)的綜合應(yīng)用
分析:(1)首先求出函數(shù)的導(dǎo)數(shù),然后分別令f′(x)<0,f′(x)>0,求出函數(shù)的單調(diào)區(qū)間;
(2)求出導(dǎo)數(shù),對(duì)b討論,由于函數(shù)f(x)在R上有且僅有一個(gè)零點(diǎn),則函數(shù)的極大值小于0,或者是函數(shù)的極小值大于0,解出參數(shù)范圍即可.
解答: 解:(1)f′(x)=x2+(b-1)x-b,由于b=1,則有
f′(x)=x2-1,
令f′(x)>0,得x>1或x<-1,
令f′(x)<0,得-1<x<1,
∴f(x)的單調(diào)遞增區(qū)間是(-∞,-1)和(1,+∞),
單調(diào)遞減區(qū)間是(-1,1).
(2)f′(x)=x2+(b-1)x-b=(x+b)(x-1),
則-b,1為方程f′(x)=0的兩根,
若b=-1,則f′(x)≥0,f(x)遞增,成立;
若b>-1,則f(x)在(-∞,-b),(1,+∞)遞增,在(-b,1)遞減,
則f(1)為函數(shù)f (x)極小值,且為-
b
2
-
1
6
,f(-b)為極大值,且為
b2
2
+
1
6
b3

由于函數(shù)f (x) 在R上有且僅有一個(gè)零點(diǎn),
-
b
2
-
1
6
>0或
b2
2
+
1
6
b3
<0,解得,-1<b<-
1
3
;
若b<-1時(shí),則f(x)在(-∞,-b),(1,+∞)遞減,在(-b,1)遞增.
則f(1)為函數(shù)f (x)極大值,且為-
b
2
-
1
6
,f(-b)為極小值,且為
b2
2
+
1
6
b3

由于函數(shù)f (x) 在R上有且僅有一個(gè)零點(diǎn),
-
b
2
-
1
6
<0或
b2
2
+
1
6
b3
>0,解得,-3<b<-1.
則b的取值范圍為:-3<b<-
1
3
點(diǎn)評(píng):此題主要考查多項(xiàng)式函數(shù)的導(dǎo)數(shù),函數(shù)單調(diào)性的判定,函數(shù)最值,函數(shù)、方程等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力及分析與解決問(wèn)題的能力,難度不大.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,已知sinA+cosA=
1
5
,則角A為( 。
A、銳角B、直角
C、鈍角D、銳角或鈍角

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合 A={1,2},集合B滿(mǎn)足A∪B=A,則集合B有(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知定義域?yàn)镽的函數(shù)f(x)滿(mǎn)足f(4)=-3,且對(duì)任意x∈R總有f′(x)<3,則不等式f(x)<3x-15的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直線(xiàn)l:y=x+b與拋物線(xiàn)C:x2=4y相切于點(diǎn)A.
(Ⅰ)求實(shí)數(shù)b的值;
(Ⅱ)求點(diǎn)A到拋物線(xiàn)C的準(zhǔn)線(xiàn)的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

數(shù)列{an}的通項(xiàng)公式an=2n-9,(n∈N+) 則|a1|+|a2|+|a3|+…+|a10|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)二次函數(shù)f(x)=ax2+bx+c滿(mǎn)足一下條件
①x∈R時(shí),f(x-4)=f(2-x),且f(x)≥x;
②x∈(0,2)時(shí),f(x)≤(x+12)2;
③f(x)在R上的最小值0;
(1)求f(x)的解析式;
(2)求最大的實(shí)數(shù)m(m>1),使得存在t∈R,只要x∈[1,m],就有f(x+t)≤x..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=3x2-2x在x=1處的導(dǎo)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若f(x)=x5+2x3+3x2+x+1,用秦九韶算法計(jì)算f(3)=( 。
A、327B、328
C、165D、166

查看答案和解析>>

同步練習(xí)冊(cè)答案