4.設(shè)集合A={x|x2-2x-3<0},B={x|y=ln(2-x)},則A∩B=( 。
A.{x|-1<x<3}B.{x|-1<x<2}C.{x|-3<x<2}D.{x|1<x<2}

分析 解不等式求出集合A,求函數(shù)定義域得出B,再根據(jù)定義寫出A∩B.

解答 解:集合A={x|x2-2x-3<0}={x|-1<x<3},
B={x|y=ln(2-x)}={x|2-x>0}={x|x<2},
則A∩B={x|-1<x<2}.
故選:B.

點(diǎn)評(píng) 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,三棱錐A-BCD中,△BCD為等邊三角形,AC=AD,E為CD的中點(diǎn);
(1)求證:CD⊥平面ABE;
(2)設(shè)AB=3,CD=2,若AE⊥BC,求三棱錐A-BCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在等比數(shù)列{an}中,已知a3,a7是方程x2-6x+1=0的兩根,則a5=(  )
A.1B.-1C.±1D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.某幾何體的三視圖如圖所示,若該幾何體的體積是12π,則它的表面積是( 。
A.18π+16B.20π+16C.22π+16D.24π+16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)函數(shù)f(x)=sin(ωx+φ)(φ>0)的圖象關(guān)于直線x=-1和x=2對(duì)稱,則f(0)的取值集合是( 。
A.{-1,1,-$\frac{1}{2}$}B.{1,-$\frac{1}{2}$,$\frac{1}{2}$}C.{-1,1,-$\frac{1}{2}$,$\frac{1}{2}$}D.{-1,1,-2,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知F1,F(xiàn)2是雙曲線C:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0$,b>0)的左、右焦點(diǎn),若直線y=2x與雙曲線C交于P、Q兩點(diǎn),且四邊形PF1QF2是矩形,則雙曲線的離心率為( 。
A.$5-2\sqrt{5}$B.$5+2\sqrt{5}$C.$\sqrt{5+2\sqrt{5}}$D.$\sqrt{5-2\sqrt{5}}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知$\frac{\overline z}{1+2i}=2+i$,則復(fù)數(shù)z+5的實(shí)部與虛部的和為( 。
A.10B.-10C.0D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.過雙曲線${x^2}-\frac{y^2}{8}=1$的右支上一點(diǎn)P分別向圓C1:(x+3)2+y2=4和圓C2:(x-3)2+y2=1作切線,切點(diǎn)分別為A,B,則|PA|2-|PB|2的最小值為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知集合A={-3,-2,-1},B={x|(x-1)(x+2)≤0,x∈Z},則A∪B=(  )
A.{-1}B.{-2,-1}C.{-3,-2,-1,0}D.{-3,-2,-1,0,1}

查看答案和解析>>

同步練習(xí)冊(cè)答案