分析 (1)利用等差數(shù)列的性質(zhì)求出數(shù)列的首項(xiàng)與公差,然后求解通項(xiàng)公式.
(2)求出數(shù)列的前n項(xiàng)和,利用函數(shù)的單調(diào)性求解和的最小值即可.
解答 解。1)由a2+a6=6,得a4=3,又由S5=$\frac{5({a}_{1}+{a}_{5})}{2}$=5a3=$\frac{35}{3}$,得a3=$\frac{7}{3}$,
設(shè)等差數(shù)列{an}的公差為d,則$\left\{\begin{array}{l}{{a}_{1}+2d=\frac{7}{3}}\\{{a}_{1}+3d=3}\end{array}\right.$,解得$\left\{\begin{array}{l}{{a}_{1}=1}\\{d=\frac{2}{3}}\end{array}\right.$,
∴an=$\frac{2}{3}$n+$\frac{1}{3}$.--------(7分)
(2)${S_n}=n{a_1}+\frac{n(n-1)}{2}d=n+\frac{n(n-1)}{3}=\frac{1}{3}({n^2}+2n)$----------(10分)
因?yàn)椋?{S_n}=\frac{1}{3}{(n+1)^2}-\frac{1}{3}$,當(dāng)n≥1時,是單調(diào)遞增的,
所以,當(dāng)n=1時,Sn有最小值是S1=1.---------(14分)
點(diǎn)評 本題考查等差數(shù)列求和,通項(xiàng)公式的求法,數(shù)列的函數(shù)特征,考查計(jì)算能力.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 1或2 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | x2=16y | B. | x2=8y | C. | x2=-16y | D. | x2=-8y |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com