分析 (1)利用已知條件列出方程組,求出a,b即可得到橢圓方程.
(2))根據(jù)$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}$,$\overrightarrow{CN}=\frac{1}{2}\overrightarrow{CD}$可知,M,N分別為AB,DE的中點(diǎn),點(diǎn)A(x1,y1),B(x2,y2),直線AB的方程為x=my+1,不妨設(shè)m>0,聯(lián)立橢圓C有(m2+2)y2+2my-1=0,根據(jù)韋達(dá)定理弦長(zhǎng)公式,轉(zhuǎn)化求解三角形的面積,通過(guò)換元法以及基本不等式求解三角形的最值.
解答 解:(1)根據(jù)條件有$\left\{\begin{array}{l}{a^2}=2{b^2}\\ \frac{1}{{2{a^2}}}+\frac{3}{{4{b^2}}}=1\end{array}\right.$,解得a2=2,b2=1,所以橢圓$C:\frac{x^2}{2}+{y^2}=1$.
(2)根據(jù)$\overrightarrow{AM}=\frac{1}{2}\overrightarrow{AB}$,$\overrightarrow{CN}=\frac{1}{2}\overrightarrow{CD}$可知,M,N分別為AB,DE的中點(diǎn),且直線AB,DE斜率均存在且不為0,
現(xiàn)設(shè)點(diǎn)A(x1,y1),B(x2,y2),直線AB的方程為x=my+1,
不妨設(shè)m>0,聯(lián)立橢圓C有(m2+2)y2+2my-1=0,
根據(jù)韋達(dá)定理得:${y_1}+{y_2}=-\frac{2m}{{{m^2}+2}}$,${x_1}+{x_2}=m({y_1}+{y_2})+2=\frac{4}{{{m^2}+2}}$,$M(\frac{2}{{{m^2}+2}},\frac{-m}{{{m^2}+2}})$,$|MF|=\frac{{m\sqrt{{m^2}+1}}}{{{m^2}+2}}$,
同理可得$|NF|=\frac{{|-\frac{1}{m}|\sqrt{{{(-\frac{1}{m})}^2}+1}}}{{{{(-\frac{1}{m})}^2}+2}}$,
所以△MNF面積${S_{△MNF}}=\frac{1}{2}|MF||NF|=\frac{{m+\frac{1}{m}}}{{4{{(m+\frac{1}{m})}^2}+2}}$,
現(xiàn)令$t=m+\frac{1}{m}≥2$,
那么${S_{△MNF}}=\frac{t}{{4{t^2}+2}}=\frac{1}{{4t+\frac{2}{t}}}≤\frac{1}{9}$,
所以當(dāng)t=2,m=1時(shí),△MNF的面積取得最大值$\frac{1}{9}$.
點(diǎn)評(píng) 本題考查橢圓的簡(jiǎn)單性質(zhì)以及橢圓方程的求法,直線與橢圓的位置關(guān)系的綜合應(yīng)用,三角形面積的最值的求法,基本不等式以及換元法的應(yīng)用.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
?繒r(shí)間 | 2.5 | 3 | 3.5 | 4 | 4.5 | 5 | 5.5 | 6 |
輪船數(shù)量 | 12 | 12 | 17 | 20 | 15 | 13 | 8 | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | k≥4或k≤-4 | B. | $k≥\sqrt{2}$或$k≤-2\sqrt{2}$ | C. | $k=±2\sqrt{3}$ | D. | $k=±2\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $2α-β=\frac{π}{4}$ | B. | $2α+β=\frac{π}{4}$ | C. | $α-β=\frac{π}{4}$ | D. | $α+β=\frac{π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 8 | B. | 6 | C. | 5 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com