【題目】如圖,在底面是直角梯形的四棱錐S-ABCD中,面.
(1)求四棱錐S-ABCD的體積;
(2)求證:面
(3)求SC與底面ABCD所成角的正切值。
【答案】(1);(2)見(jiàn)解析(3).
【解析】
(1)根據(jù)梯形的面積公式及四棱錐的體積公式直接求值即可.
(2)先由SA⊥面ABCD,可得SA⊥BC,再由AB⊥BC ,得BC⊥平面SAB,從而證得平面SAB⊥平面SBC.
(3)找到線面角是解決問(wèn)題的關(guān)鍵.連接AC ∵SA⊥面ABCD
∴∠SCA為SC與底面ABCD所成的角,然后解三角形即可.
證明:(1)S梯形ABCD=(AD+BC)·AB=(+1)×1=
VS-ABCD=××1=……………2分
(2)∵SA⊥面ABCD ∴SA⊥BC……………………………………3分
又AB⊥BC ∴BC⊥平面SAB
∴平面SAB⊥平面SBC……………………………………5分
(3)連接AC ∵SA⊥面ABCD
∴∠SCA為SC與底面ABCD所成的角……………………………………7分
在Rt△ABC中,AC==
在Rt△SAC中,tan∠SCA===……………………………………9分
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求證:恒成立;
(2)若關(guān)于的方程至少有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某學(xué)校舉行了一次安全教育知識(shí)競(jìng)賽,競(jìng)賽的原始成績(jī)采用百分制,已知高三學(xué)生的原始成績(jī)均分布在內(nèi),發(fā)布成績(jī)使用等級(jí)制,各等級(jí)劃分標(biāo)準(zhǔn)見(jiàn)表.
原始成績(jī) | 85分及以上 | 70分到84分 | 60分到69分 | 60分以下 |
等級(jí) | 優(yōu)秀 | 良好 | 及格 | 不及格 |
為了解該校高三年級(jí)學(xué)生安全教育學(xué)習(xí)情況,從中抽取了名學(xué)生的原始成績(jī)作為樣本進(jìn)行統(tǒng)計(jì),按照的分組作出頻率分布直方圖如圖所示,其中等級(jí)為不及格的有5人,優(yōu)秀的有3人.
(1)求和頻率分布直方圖中的的值;
(2)根據(jù)樣本估計(jì)總體的思想,以事件發(fā)生的頻率作為相應(yīng)事件發(fā)生的概率,若該校高三學(xué)生共1000人,求競(jìng)賽等級(jí)在良好及良好以上的人數(shù);
(3)在選取的樣本中,從原始成績(jī)?cè)?/span>80分以上的學(xué)生中隨機(jī)抽取2名學(xué)生進(jìn)行學(xué)習(xí)經(jīng)驗(yàn)介紹,求抽取的2名學(xué)生中優(yōu)秀等級(jí)的學(xué)生恰好有1人的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)=ex-ax-1.
(1)求f(x)的單調(diào)增區(qū)間;
(2)若f(x)在定義域R內(nèi)單調(diào)遞增,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)設(shè),試討論單調(diào)性;
(2)設(shè),當(dāng)時(shí),任意,存在,使,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,已知圓的圓心坐標(biāo)為,半徑為,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸正半軸為極軸,建立極坐標(biāo)系,直線的參數(shù)方程為: (為參數(shù))
(1)求圓和直線的極坐標(biāo)方程;
(2)點(diǎn) 的極坐標(biāo)為,直線與圓相較于,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,P是雙曲線 (a>0,b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是雙曲線的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且.某同學(xué)用以下方法研究|OM|:延長(zhǎng)F2M交PF1于點(diǎn)N,可知△PNF2為等腰三角形,且M為F2N的中點(diǎn),得|OM|=|NF1|=…=a。類(lèi)似地:P是橢圓 (a>b>0,xy≠0)上的動(dòng)點(diǎn),F(xiàn)1,F(xiàn)2是橢圓的焦點(diǎn),M是∠F1PF2的平分線上一點(diǎn),且,則|OM|的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知菱形的邊長(zhǎng)為2, . 是邊上一點(diǎn),線段交于點(diǎn).
(1)若的面積為,求的長(zhǎng);
(2)若,求.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com