3.△ABC中,A=$\frac{π}{6}$,b=2,以下錯誤的是( 。
A.若a=1,則c有一解B.若a=$\sqrt{3}$,則c有兩解
C.若a=$\frac{11}{6}$,則c有兩解D.若a=3,則c有兩解

分析 在△ABC中,已知a,b和角A時,①若A為銳角,有bsin A<a<b,則三角形有兩解,②若a=bin A,則有一解,③若a≥b,則有一解,逐一判斷各個選項即可得解.

解答 解:∵A=$\frac{π}{6}$,b=2,可得:bsinA=1,
對于A,若a=1,則A為銳角,bsinA=a,可得c有一解,故正確;
對于B,若a=$\sqrt{3}$,則bsinA<a<b,則c有兩解,故正確;
對于C,若a=$\frac{11}{6}$,則bsinA<a<b,c有兩解,故正確;
對于D,若a=3,則A為銳角,a>b,則c有一解,故不正確;
故選:D.

點評 本題主要考查了正弦定理在解三角形中的應(yīng)用,考查了三角形解的個數(shù)的判斷,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知等差數(shù)列{an},(n∈N*)滿足a1=2,a7=14.
(1)求該數(shù)列的公差d和通項公式an;
(2)設(shè)Sn為數(shù)列{an}的前n項和,若Sn≥3n+15,求n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列有關(guān)命題的敘述,錯誤的個數(shù)為(  )
(1)若p∨q為真命題,則p∧q為真命題;
(2)命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x+2≠0”;
(3)命題“若a>b,則$\frac{1}{a}<\frac{1}$”為真命題;
(4)命題:“若am2≤bm2,則a≤b”的否命題為真.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在△ABC中,a,b,c分別是角A,B,C的對邊,已知3(b2+c2)=3a2+2bc.
(1)求sinA的值;
(2)若a=2,△ABC的面積S=$\frac{{\sqrt{2}}}{2}$,且b>c,求b和c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.集合A={x|x2-2x<0},B={x|1≤x≤4},則A∩B={x|1≤x<2}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=4x2-1,若數(shù)列{${\frac{1}{f(n)$}前n項和為Sn,則S2018的值為( 。
A.$\frac{2017}{2018}$B.$\frac{2016}{2018}$C.$\frac{4036}{4037}$D.$\frac{2018}{4037}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在正方體ABCD-A1B1C1D1中,M,N是棱A1B1,B1B的中點,求異面直線AM和CN所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.如圖是在求:S=1+$\frac{1}{2}$+$\frac{1}{2^2}$+$\frac{1}{2^3}$+…+的一個程序框圖.
(1)在程序框圖的①處填上適當(dāng)?shù)恼Z句.
(2)寫出相應(yīng)的程序.
答:(1)T=T/2;
(2)S=0
I=0
T=1
DO
S=S+T
T=T/2
I=I+1
LOOPUNTILI>9
PRINTS
END.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.寫出下列命題的否定,并判定真假.
(1)?T=2kπ,k∈Z,sin(x+T)=sinx;
(2)若直線l⊥平面α,則對任意l′?α,l⊥l′.

查看答案和解析>>

同步練習(xí)冊答案