【題目】如圖所示,在四棱錐中,四邊形為矩形, 為等腰三角形, ,平面平面,且, , 分別為的中點.
(1)證明: 平面;
(2)證明:平面平面;
(3)求四棱錐的體積.
【答案】(1)見解析;(2) 見解析;(3).
【解析】試題分析:(1)EF∥平面PAD,根據直線與平面平行的判定定理可知只需證EF與平面PAD內一直線平行,連AC,根據中位線可知EF∥PA,EF平面PAD,PA平面PAD,滿足定理所需條件;
(2平面PAD⊥平面ABCD,根據面面垂直的判定定理可知在平面ABCD內一直線與平面PAD垂直,根據面面垂直的性質定理可知CD⊥平面PAD,又CD平面ABCD,滿足定理所需條件;
(3)過P作PO⊥AD于O,從而PO⊥平面ABCD,即為四棱錐的高,最后根據棱錐的體積公式求出所求即可.
解:(1)如圖所示,
連接. ∵四邊形為矩形,且為的中點,
∴也是的中點. 又是的中點, ,
∵平面, 平面.平面
(2) 證明:∵平面平面, ,平面平面,
∴平面. ∵平面,∴平面平面.
(3)取的中點,連接. ∵平面平面, 為等腰三角形,
∴平面,即為四棱錐的高. ∵,∴. 又,
∴四棱錐的體積.
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),.
(1)若函數(shù)恰有兩個不相同的零點,求實數(shù)的值;
(2)記為函數(shù)的所有零點之和,當時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某工廠為了對新研發(fā)的一種產品進行合理定價,隨機抽取了個試銷售數(shù)據,得到第個銷售單價(單位:元)與銷售(單位:件)的數(shù)據資料,算得
(1)求回歸直線方程;
(2)預計在今后的銷售中,銷量與單價仍然服從(1)中的關系,且該產品的成本是元/件,為使工廠獲得最大利潤,該產品的單價應定為多少元?(利潤-銷售收入-成本)
附:回歸直線方程中,,其中是樣本平均值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】設,滿足約束條件.
(1)畫出不等式表示的平面區(qū)域,并求該平面區(qū)域的面積;
(2)若目標函數(shù)的最大值為4,求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如果一個幾何體的主視圖與左視圖是全等的長方形,邊長分別是,如圖所示,俯視圖是一個邊長為的正方形.
(1)求該幾何體的表面積;
(2)求該幾何體的外接球的體積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二階矩陣M有特征值λ=8及對應的一個特征向量 =[ ],并且矩陣M對應的變換將點(﹣1,2)變換成(﹣2,4).
(1)求矩陣M;
(2)求矩陣M的另一個特征值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過拋物線的焦點,斜率為的直線交拋物線于兩點,且.
(1)求該拋物線的方程;
(2)已知拋物線上一點,過點作拋物線的兩條弦和,且,判斷直線是否過定點?并說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點為圓的圓心, 是圓上動點,點在圓的半徑上,且有點和上的點,滿足
(1)當在圓上運動時,求點的軌跡方程;
(2)若斜率為的直線與圓相切,與(1)中所求點的軌跡教育不同的兩點 是坐標原點,且時,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在如圖所示的多面體中, 平面, 平面, ,且, 是的中點.
(Ⅰ)求證: .
(Ⅱ)求平面與平面所成的銳二面角的余弦值.
(Ⅲ)在棱上是否存在一點,使得直線與平面所成的角是.若存在,指出點的位置;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com