A. | f(1)<ef(0),f(2)<e2f(0) | B. | f(1)>ef(0),f(2)<e2f(0) | C. | f(1)<ef(0),f(2)>e2f(0) | D. | f(1)>ef(0),f(2)>e2f(0) |
分析 令g(x)=$\frac{f(x)}{{e}^{x}}$,求出函數(shù)g(x)的導(dǎo)數(shù),判斷函數(shù)的單調(diào)性,從而求出答案.
解答 解:令g(x)=$\frac{f(x)}{{e}^{x}}$,
則g′(x)=$\frac{f′(x)-f(x)}{{e}^{x}}$>0,
故g(x)在R遞增,
故g(1)>g(0),g(2)>g(0),
即f(1)>ef(0),f(2)>e2f(0),
故選:D.
點評 本題考查了函數(shù)的單調(diào)性、導(dǎo)數(shù)的應(yīng)用,構(gòu)造函數(shù)g(x)=$\frac{f(x)}{{e}^{x}}$是解題的關(guān)鍵,本題是一道中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=-4sin($\frac{πx}{8}+\frac{π}{4}$) | B. | y=4sin($\frac{x}{8}-\frac{π}{4}$) | C. | y=-4sin($\frac{x}{8}-\frac{π}{4}$) | D. | y=4sin($\frac{x}{8}+\frac{π}{4}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\frac{3}{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 偶函數(shù)且它的圖象關(guān)于點 (π,0)對稱 | |
B. | 奇函數(shù)且它的圖象關(guān)于點 (π,0)對稱 | |
C. | 奇函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱 | |
D. | 偶函數(shù)且它的圖象關(guān)于點($\frac{3π}{2}$,0)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | -3 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com