6.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}$2=(5$\overrightarrow{a}$-4$\overrightarrow$)•$\overrightarrow$,則cos<$\overrightarrow{a}$,$\overrightarrow$>的最小值為$\frac{4}{5}$.

分析 由題意可得$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{5}$($\overrightarrow{a}$2+4$\overrightarrow$2),由向量數(shù)量積的性質(zhì):向量的平方即為模的平方,運(yùn)用基本不等式和向量的夾角公式,即可得到所求最小值.

解答 解:非零向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}$2=(5$\overrightarrow{a}$-4$\overrightarrow$)•$\overrightarrow$,
可得$\overrightarrow{a}$•$\overrightarrow$=$\frac{1}{5}$($\overrightarrow{a}$2+4$\overrightarrow$2)=$\frac{1}{5}$(|$\overrightarrow{a}$|2+4|$\overrightarrow$|2)≥$\frac{1}{5}$•2$\sqrt{|\overrightarrow{a}{|}^{2}•4|\overrightarrow{|}^{2}}$=$\frac{4}{5}$|$\overrightarrow{a}$|•|$\overrightarrow$|,
即有cos<$\overrightarrow{a}$,$\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$≥$\frac{4}{5}$•$\frac{|\overrightarrow{a}|•|\overrightarrow|}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{4}{5}$,
當(dāng)且僅當(dāng)|$\overrightarrow{a}$|=2|$\overrightarrow$|,取得最小值$\frac{4}{5}$.
故答案為:$\frac{4}{5}$.

點(diǎn)評(píng) 本題考查向量的數(shù)量積的定義和夾角公式,以及性質(zhì):向量的平方即為模的平方,同時(shí)考查基本不等式的運(yùn)用,注意等號(hào)成立的條件,考查運(yùn)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(3,4)在雙曲線的漸近線上,若|$\overrightarrow{P{F}_{1}}$$+\overrightarrow{P{F}_{2}}$|=|$\overrightarrow{{F}_{1}{F}_{2}}$|,則此雙曲線的方程為( 。
A.$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{4}$=1B.$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1C.$\frac{{x}^{2}}{4}$$-\frac{{y}^{2}}{3}$=1D.$\frac{{x}^{2}}{9}$$-\frac{{y}^{2}}{16}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知數(shù)列{an}中,前n項(xiàng)和為Sn,且${S_n}=\frac{n+2}{3}{a_n}$,則$\frac{a_n}{{{a_{n-1}}}}$的最大值為( 。
A.-3B.-1C.3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知i為虛數(shù)單位,則|3+2i|=(  )
A.$\sqrt{5}$B.$\sqrt{7}$C.$\sqrt{13}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.某幾何體的三視圖如圖所示,則該幾何體的體積為40,表面積為32+16$\sqrt{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}滿足a1=1,${a_{n+1}}•{a_n}=\frac{1}{n}$(n∈N*),
(Ⅰ) 證明:$\frac{{{a_{n+2}}}}{n}=\frac{a_n}{n+1}$;
(Ⅱ) 證明:$2({\sqrt{n+1}-1})≤\frac{1}{{2{a_3}}}+\frac{1}{{3{a_4}}}+…+\frac{1}{{(n+1){a_{n+2}}}}≤n$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.已知離散型隨機(jī)變量X的分布列為
X012
Pa$\frac{1}{2}$$\frac{1}{4}$
則變量X的數(shù)學(xué)期望E(X)=1,方差D(X)=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.等比數(shù)列{an}的各項(xiàng)均為正數(shù),且$2{a_1}+3{a_2}=1,{a_3}^2=9{a_2}{a_6}$.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=log3a1+log3a2+…+log3an,求數(shù)列$\left\{{-\frac{1}{b_n}}\right\}$的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在平面直角坐標(biāo)系xOy中,橢圓C:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦距為2$\sqrt{2}$,A為C的上頂點(diǎn),P為C第一象限上的一點(diǎn),連接AP交x軸于點(diǎn)Q,過點(diǎn)Q作C第四象限的一條切線l交y軸于點(diǎn)B,當(dāng)P為AQ的中點(diǎn)時(shí),|OB|=$\sqrt{6}$.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)連接PO,求四邊形OPQB面積的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案