1.某幾何體的三視圖如圖所示,則該幾何體的體積為40,表面積為32+16$\sqrt{13}$.

分析 判斷幾何體的形狀,利用三視圖的數(shù)據(jù)求出幾何體的表面積即可.

解答 解:幾何體是放倒的三棱柱去掉兩個三棱錐后的幾何體,底面是邊長為4,8的矩形,兩個側(cè)面都是等腰梯形上、下底邊長為8,4;兩側(cè)是全等的等腰三角形,底邊長為4,三角形的高為:$\sqrt{4+9}$=$\sqrt{13}$.
等腰梯形的高為:$\sqrt{4+9}$=$\sqrt{13}$.
幾何體的體積為$\frac{1}{2}×4×3×4$+2×$\frac{1}{3}×2×4×3$=40
幾何體的表面積為:S=4×8+$2×\frac{1}{2}×4×\sqrt{13}$+2×$\frac{1}{2}×(4+8)×\sqrt{13}$=32+16$\sqrt{13}$,
故答案為:40,$32+16\sqrt{13}$.

點評 本題考查三視圖與幾何體的直觀圖的關(guān)系,表面積的求法,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=Asin(ωx+φ)(A,ω,φ為常數(shù),A>0,ω>0,|φ|<π)的部分圖象如圖所示,則下列結(jié)論正確的是( 。
A.函數(shù)f(x)的最小正周期為$\frac{π}{2}$
B.直線x=-$\frac{π}{12}$是函數(shù)f(x)圖象的一條對稱軸
C.函數(shù)f(x)在區(qū)間[-$\frac{5π}{12}$,$\frac{π}{6}$]上單調(diào)遞增
D.將函數(shù)f(x)的圖象向左平移$\frac{π}{3}$個單位,得到函數(shù)g(x)的圖象,則g(x)=2sin2x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.球O與棱長為2的正方體ABCD-A1B1C1D1的各個面都相切,點M為棱DD1的中點,則平面ACM截球O所得截面的面積為(  )
A.$\frac{4π}{3}$B.πC.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.雙曲線x2-$\frac{{y}^{2}}{3}$=1的焦距是4,離心率是2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若${(x-1)^8}=1+{a_1}x+{a_2}{x^2}+…+{a_8}{x^8}$,則a5=( 。
A.56B.-56C.35D.-35

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.若非零向量$\overrightarrow{a}$,$\overrightarrow$滿足:$\overrightarrow{a}$2=(5$\overrightarrow{a}$-4$\overrightarrow$)•$\overrightarrow$,則cos<$\overrightarrow{a}$,$\overrightarrow$>的最小值為$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知雙曲線$\frac{x^2}{a^2}-{y^2}$=1的一條漸近線方程是y=$\frac{{\sqrt{3}}}{3}$x,則雙曲線的離心率為( 。
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{{\sqrt{6}}}{3}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知直線x+y-2a=0與圓心為C的圓(x-1)2+(y-a)2=4相交于A,B兩點,且△ABC為等邊三角形,則實數(shù)a=(  )
A.$4±\sqrt{15}$B.$±\frac{1}{3}$C.1或7D.$1±\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.若雙曲線C1:$\frac{{x}^{2}}{7}$-$\frac{{y}^{2}}{4+2a}$=1與雙曲線C:$\frac{{y}^{2}}{11-a}$-$\frac{{x}^{2}}{6}$=1的焦距相等,則實數(shù)a的值為( 。
A.-1B.1C.2D.4

查看答案和解析>>

同步練習(xí)冊答案