分析 根據(jù)條件,可分別以DC,DA所在直線為x,y軸,建立平面直角坐標(biāo)系,并設(shè)正方形的邊長(zhǎng)為2,從而可求出點(diǎn)A,E,B,D的坐標(biāo),進(jìn)而求出向量$\overrightarrow{AE},\overrightarrow{BD}$的坐標(biāo),從而便可求出cosθ的值.
解答 解:如圖,
分別以DC,DA所在直線為x,y軸,建立如圖平面直角坐標(biāo)系,設(shè)正方形的邊長(zhǎng)為2,則:
A(0,2),E(2,1),B(2,2),D(0,0);
∴$\overrightarrow{AE}=(2,-1),\overrightarrow{BD}=(-2,-2)$;
∴$|\overrightarrow{AE}|=\sqrt{5},|\overrightarrow{BD}|=2\sqrt{2}$,$\overrightarrow{AE}•\overrightarrow{BD}=-2$.
∴$cosθ=\frac{\overrightarrow{AE}•\overrightarrow{BD}}{|\overrightarrow{AE}||\overrightarrow{BD}|}=\frac{-2}{\sqrt{5}•2\sqrt{2}}=-\frac{\sqrt{10}}{10}$.
故答案為:$-\frac{\sqrt{10}}{10}$.
點(diǎn)評(píng) 考查建立坐標(biāo)系,利用坐標(biāo)解決向量問題的方法,在坐標(biāo)系中能確定點(diǎn)的坐標(biāo),根據(jù)向量坐標(biāo)求向量長(zhǎng)度,向量數(shù)量積的坐標(biāo)運(yùn)算.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m>1 | B. | m<1 | C. | m=1 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{4\sqrt{2}-2}{7}$ | B. | $\frac{4\sqrt{2}+2}{7}$ | C. | $\frac{1+\sqrt{3}}{2}$ | D. | $\frac{1+\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {2,3} | C. | {1,2,3,4,6,8} | D. | {1,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{13}$ | B. | 3 | C. | 5 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {1,2} | B. | {-1,-2} | C. | {-2,-1,2} | D. | {-2,-1,0,2} |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com