在平面直角坐標(biāo)系中,方程
x
a
+
y
b
=1表示x、y軸上的截距分別為a、b的直線,類比到空間直角坐標(biāo)系中,在x、y、z軸上截距分別為a、b、c(abc≠0)的平面方程為( 。
A、
x
a
+
y
b
+
z
c
=1
B、
x
ab
+
y
bc
+
z
ca
=1
C、
xy
ab
+
yz
bc
+
zx
ca
=1
D、ax+by+cz=1
考點:類比推理
專題:計算題,推理和證明
分析:根據(jù)平面上直線的截距式的幾何意義,類比到空間中可得結(jié)論.
解答: 解:∵在平面直角坐標(biāo)系中,方程
x
a
+
y
b
=1表示的圖形是一條直線,
具有特定性質(zhì):“在x軸,y軸上的截距分別為a,b”
類比到空間坐標(biāo)系中,在x、y、z軸上截距分別為a、b、c(abc≠0)的平面方程為
x
a
+
y
b
+
z
c
=1.
故選:A.
點評:本題將坐標(biāo)平面,到三維空間加以推廣,探求它所表示的圖形,著重考查了空間直角坐標(biāo)系中平面的方程和類比推理等知識點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

下列命題正確的是(  )
A、若a2>b2,則a>b
B、若
1
a
1
b
,則a<b
C、若ac>bc,則a>b
D、若
a
b
,則a>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知sinα=-
1
2
,cosα=
3
2
,則角α終邊所在的象限是( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若M(x,y)為由不等式組
0≤x≤
2
y≤2
x-
2
y≤0
確定的平面區(qū)域D上的動點,點A的坐標(biāo)為(
2
,1),則z=
OM
OA
的最大值為( 。
A、3
B、4
C、3
2
D、4
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)滿足f′(x)>3恒成立,又f(-1)=3,則f(x)<3x+6的解集是( 。
A、(-1,1)
B、(-1,+∞)
C、(-∞,-1)
D、(-∞,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

定義在R上的函數(shù)f(x)=
1
|x-2|
,
(x≠2)
1,(x=2)
,若關(guān)于x的方程f2(x)-mf(x)+m-1=0(其中m>2)有n個不同的實數(shù)根x1,x2,…xn,則f(
n
i=1
xi)的值為( 。
A、
1
4
B、
1
8
C、
1
12
D、
1
16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把1289化成五進(jìn)制數(shù)的末位數(shù)字為(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=cosx+cos(x+
π
2
).
(1)求f(
π
12
);
(2)設(shè)α、β∈(-
π
2
,0),f(α+
4
)=-
3
2
5
,f(
π
4
-β)=-
5
2
13
,求cos(α+β).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(m+1)x2-(m-1)x+3(m-1)<0對任何實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案