2.已知拋物線y2=4x,圓F:(x-1)2+y2=1,直線y=k(x-1)自上而下順次與上述兩曲線交于點A,B,C,D,則|AB||CD|的值是1.

分析 利用拋物線的定義和|AF|=|AB|+1就可得出|AB|=xA,同理可得:|CD|=xD,要分l⊥x軸和l不垂直x軸兩種情況分別求值,當l⊥x軸時易求,當l不垂直x軸時,將直線的方程代入拋物線方程,利用根與系數(shù)關系可求得.

解答 解:∵y2=4x,焦點F(1,0),準線 l0:x=-1.
由定義得:|AF|=xA+1,
又∵|AF|=|AB|+1,∴|AB|=xA,
同理:|CD|=xD,
當l⊥x軸時,則xD=xA=1,∴|AB|•|CD|=1          
當l:y=k(x-1)時,代入拋物線方程,得:k2x2-(2k2+4)x+k2=0,
∴xAxD=1,∴|AB|•|CD|=1
綜上所述,|AB|•|CD|=1,
故答案為1.

點評 本題主要考查拋物線的定義、一元二次方程的根與系數(shù)關系,考查學生的計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

12.如圖,四邊形ABCD中,△BCD為正三角形,AD=AB=2,BD=2$\sqrt{3}$,AC與BD交于O點.將△ACD沿邊AC折起,使D點至P點,已知PO與平面ABCD所成的角為θ,且P點在平面ABCD內的射影落在△ACD內.
(Ⅰ)求證:AC⊥平面PBD;
(Ⅱ)若θ=$\frac{π}{3}$時,求二面角A-PB-D的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

13.已知向量|$\overrightarrow{a}$|=$\sqrt{3}$,|$\overrightarrow$|=2,且$\overrightarrow{a}$•($\overrightarrow{a}$-$\overrightarrow$)=0,則$\overrightarrow{a}$-$\overrightarrow$的模等于1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點為F1,左頂點為A,過F1作x軸的垂線交雙曲線于P、Q兩點,過P作PM垂直QA于M,過Q作QN垂直PA于N,設PM與QN的交點為B,若B到直線PQ的距離大于a+$\sqrt{{a}^{2}+^{2}}$,則該雙曲線的離心率取值范圍是( 。
A.(1-$\sqrt{2}$)B.($\sqrt{2}$,+∞)C.(1,2$\sqrt{2}$)D.(2$\sqrt{2}$,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$a={(\sqrt{2})^{\frac{4}{3}}}$,$b={2^{\frac{2}{5}}}$,$c={9^{\frac{1}{3}}}$,則( 。
A.b<a<cB.a<b<cC.b<c<aD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

7.若滿足條件$\left\{\begin{array}{l}{x-y≥0}\\{x+y-2≤0}\\{y≥a}\end{array}\right.$的整點(x,y)恰有9個,其中整點是指橫、縱坐標都是整數(shù)的點,則整數(shù)a的值為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.雙曲線${x^2}-\frac{y^2}{m}=1$的離心率大于$\sqrt{2}$的充要條件是( 。
A.m>1B.$m>\frac{1}{2}$C.m>2D.m≥1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.通過模擬實驗的方法可以模擬今后三天的降雨情況,現(xiàn)利用計算機產生0到9之間取整數(shù)的隨機數(shù),設1,2,3,4表示下雨,5,6,7,8,9,0表示不下雨;因為是3天,所以每三個隨機數(shù)作為一組,共產生了20組隨機數(shù):
907    966    191    925    271    932    812    458    569    683
431    257    393    027    556    488    730    113    537    989
就相當于做了20次試驗,估計三天中恰有兩天下雨的概率為( 。
A.20%B.25%C.40%D.80%

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.在等差數(shù)列{an}中,a3=6,a8=26,Sn為等比數(shù)列{bn}的前n項和,且b1=1,4S1,3S2,2S3成等差數(shù)列.
(Ⅰ)求數(shù)列{an},{bn}的通項公式;
(Ⅱ)設cn=|an|•bn,求數(shù)列{cn}的前n項和Tn

查看答案和解析>>

同步練習冊答案