A. | $(\frac{3}{5},-\frac{4}{5})$ | B. | $(\frac{4}{5},\frac{3}{5})$ | C. | $(-\frac{3}{5},\frac{4}{5})$ | D. | $(-\frac{4}{5},\frac{3}{5})$ |
分析 根據(jù)題意,由A、B的坐標(biāo)可得向量$\overrightarrow{AB}$的坐標(biāo),設(shè)要求向量為$\overrightarrow{a}$,由向量平行的坐標(biāo)可得$\overrightarrow{a}$=λ$\overrightarrow{AB}$=(3λ,-4λ),(λ<0),又由$\overrightarrow{a}$為單位向量,則有(3λ)2+(-4λ)2=1,解可得λ的值,即可得$\overrightarrow{a}$的坐標(biāo),即可得答案.
解答 解:根據(jù)題意,點A(1,3),B(4,-1),則$\overrightarrow{AB}$=(3,-4)
設(shè)要求向量為$\overrightarrow{a}$,且$\overrightarrow{a}$=λ$\overrightarrow{AB}$=(3λ,-4λ),(λ<0)
又由$\overrightarrow{a}$為單位向量,則有(3λ)2+(-4λ)2=1,
解可得λ=±$\frac{1}{5}$,
又由λ<0,則λ=-$\frac{1}{5}$,
故$\overrightarrow{a}$=(-$\frac{3}{5}$,$\frac{4}{5}$);
故選:C.
點評 本題考查向量平行的坐標(biāo)表示方法,關(guān)鍵是用λ表示要求向量的坐標(biāo).
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | .$\frac{{\sqrt{5}}}{5}$ | B. | .$\frac{{\sqrt{6}}}{3}$ | C. | .$\frac{{\sqrt{2}}}{2}$ | D. | .$\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\frac{7π}{2}$ | B. | $\frac{7π}{4}$ | C. | -$\frac{7π}{16}$ | D. | -$\frac{7π}{4}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1或3 | C. | $\frac{1+\sqrt{2}}{2}$ | D. | $\frac{\sqrt{2}-1}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com