2.已知集合A={1,2,3},B={x|(x+1)(x-2)<0,x∈Z},則A∪B={0,1,2,3}.

分析 先求出集合A,B,由此利用并集的定義能求出A∪B的值.

解答 解:∵集合A={1,2,3},
B={x|(x+1)(x-2)<0,x∈Z}={0,1},
∴A∪B={0,1,2,3}.
故答案為:{0,1,2,3}.

點(diǎn)評 本題考查并集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,已知梯形ABCD內(nèi)接于圓O,AB∥CD,過點(diǎn)D作圓的切線交CA的延長線于點(diǎn)F,且DF∥BC,如果CA=5,BC=4.
(Ⅰ) 求證:△AFD~△BCA;
(Ⅱ) 求CD的長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知二次函數(shù)f(x)的圖象關(guān)于y軸對稱,且在[0,+∞)上為增函數(shù),則f(0),f(3),f(-4)的大小關(guān)系為f(0)<f(3)<f(-4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)函數(shù)f(x)=ax2+bx+b-1(a≠0).
(1)當(dāng)a=1,b=-2時(shí),求函數(shù)f(x)的零點(diǎn);
(2)若對任意b∈R,函數(shù)f(x)恒有兩個(gè)不同零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.$\int_{-1}^1$(xcosx+$\sqrt{4-{x^2}}$)dx=$\frac{2π}{3}$+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在直線l:x+y-4=0任取一點(diǎn)M,過M且以$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1的焦點(diǎn)為焦點(diǎn)作橢圓,則所作橢圓的長軸長的最小值為2$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.為了得到函數(shù)y=sin(2x-$\frac{π}{2}$)的圖象,只需把函數(shù)y=sin2x的圖象( 。
A.向左平移$\frac{π}{4}$個(gè)單位B.向右平移$\frac{π}{4}$個(gè)單位
C.向左平移$\frac{π}{2}$個(gè)單位D.向右平移$\frac{π}{2}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.如圖所示,D是△ABC的AB邊上的中點(diǎn),則向量$\overrightarrow{CD}$=①(填寫正確的序號(hào)).
①$-\overrightarrow{BC}+\frac{1}{2}\overrightarrow{BA}$,②$-\overrightarrow{BC}-\frac{1}{2}\overrightarrow{BA}$,③$\overrightarrow{BC}-\frac{1}{2}\overrightarrow{BA}$,④$\overrightarrow{BC}+\frac{1}{2}\overrightarrow{BA}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖,在△ABC中,N為線段AC上接近A點(diǎn)的四等分點(diǎn),若$\overrightarrow{AP}=({m+\frac{2}{9}})\overrightarrow{AB}+\frac{2}{9}\overrightarrow{BC}$,則實(shí)數(shù)m的值為( 。
A.$\frac{1}{9}$B.$\frac{1}{3}$C.1D.3

查看答案和解析>>

同步練習(xí)冊答案