14.觀察下列等式
1=1                    
2+3+4=9                
3+4+5+6+7=25            
4+5+6+7+8+9+10=49      
5+6+7+8+9+10+11+12+13=81
照此規(guī)律下去
(Ⅰ)寫出第6個等式;
(Ⅱ)你能做出什么一般性的猜想?請用數(shù)學歸納法證明猜想.

分析 (I)根據(jù)式子的開始項和最后一項及右邊特點得出;
(II)驗證n=1猜想是否成立,再假設(shè)n=k成立,推導(dǎo)n=k+1成立即可.

解答 (I)解:第6個式子為6+7+8+9+…+16=121.
(II)猜想:n+(n+1)+(n+2)+…+(3n-2)=(2n-1)2,
證明:(1)當n=1時,猜想顯然成立;
(2)假設(shè)n=k時,猜想成立,即k+(k+1)+(k+2)+…+(3k-2)=(2k-1)2
則當n=k+1時,(k+1)+(k+2)+(k+3)+…+(3k-2)+(3k-1)+3k+(3k+1)
=(2k-1)2-k+(3k-1)+3k+(3k+1)=4k2+4k+1=(2k+1)2=[2(k+1)-1]2
∴當n=k+1時,猜想成立.
所以,對于任意n∈N+,猜想都成立.

點評 本題考查了數(shù)學歸納法證明,屬于中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.若a=$\frac{ln3}{3}$,b=$\frac{ln5}{5}$,c=$\frac{ln6}{6}$,則( 。
A.a<b<cB.c<b<aC.c<a<bD.b<a<c

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知向量$\overrightarrow a=(2,5)$,$\overrightarrow b=(x,-2)$,且$\overrightarrow a⊥\overrightarrow b$,則x=5,$|{\overrightarrow a-\overrightarrow b}|$=$\sqrt{58}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.點G是△ABC的重心,$|{\overrightarrow{AC}}|=1,|{\overrightarrow{BC}}|=\sqrt{2}$,且AG⊥BG,則sinC=$\frac{4}{5}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.解關(guān)于x的不等式:mx2-(m-2)x-2>0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.復(fù)數(shù)z滿足z(2+i)=3-6i(i為虛數(shù)單位),則復(fù)數(shù)z的虛部為( 。
A.3B.-3C.3iD.-3i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.已知α,β是兩個不同的平面,m,n是兩條不同的直線,給出下列命題:
①若m⊥α,m?β,則α⊥β;
②若m?α,n?α,m∥β,n∥β,則α∥β;
③若α∩β=m,n∥m,且n?α,n?β,則n∥α且n∥β
其中正確命題的序號是①③.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow$=(1,cosx),x∈R,設(shè)f(x)=$\overrightarrow{a}$$•\overrightarrow$
(1)求函數(shù)f(x)的對稱軸方程;
(2)若f(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,θ∈(0,$\frac{π}{2}$),求f(θ-$\frac{π}{4}$)的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知O為原點,當θ=-$\frac{π}{6}$時,參數(shù)方程$\left\{\begin{array}{l}{x=3cosθ}\\{y=9sinθ}\end{array}\right.$(θ為參數(shù))上的點為A,則直線OA的傾斜角為( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

同步練習冊答案