分析 (1)運(yùn)用向量的數(shù)量積的坐標(biāo)表示,結(jié)合正弦函數(shù)的對稱軸方程,即可得到所求;
(2)運(yùn)用誘導(dǎo)公式和同角三角函數(shù)的平方關(guān)系,計算即可得到所求值.
解答 解:(1)向量$\overrightarrow{a}$=(sinx,1),$\overrightarrow$=(1,cosx),x∈R,
設(shè)f(x)=$\overrightarrow{a}$$•\overrightarrow$=sinx+cosx=$\sqrt{2}$sin(x+$\frac{π}{4}$),
由x+$\frac{π}{4}$=kπ+$\frac{π}{2}$,k∈Z,
可得x=kπ+$\frac{π}{4}$,k∈Z,
即有函數(shù)f(x)的對稱軸方程為x=kπ+$\frac{π}{4}$,k∈Z;
(2)f(θ+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,θ∈(0,$\frac{π}{2}$),
可得$\sqrt{2}$sin(θ+$\frac{π}{4}$+$\frac{π}{4}$)=$\frac{\sqrt{2}}{3}$,
即有cosθ=$\frac{1}{3}$,sinθ=$\sqrt{1-\frac{1}{9}}$=$\frac{2\sqrt{2}}{3}$,
f(θ-$\frac{π}{4}$)=$\sqrt{2}$sin(θ-$\frac{π}{4}$+$\frac{π}{4}$)=$\sqrt{2}$sinθ=$\frac{4}{3}$.
點(diǎn)評 本題考查向量的數(shù)量積的坐標(biāo)表示和三角形函數(shù)的恒等變換,以及正弦函數(shù)的圖象和性質(zhì),考查運(yùn)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9\sqrt{3}}{8}$ | B. | $\frac{9}{8}$ | C. | 9$\sqrt{3}$ | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,0]∪[$\frac{3}{4}$,+∞) | B. | (-∞,0]∪[$\frac{4}{3}$,+∞) | C. | [0,$\frac{3}{4}$] | D. | [0,$\frac{4}{3}$] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(n)=n+1 | B. | f(n)=2n-1 | C. | $f(n)=\frac{{n({n-3})}}{2}$ | D. | $f(n)=\frac{{n({n+1})}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com