14.下列說(shuō)法中,正確的是( 。
A.數(shù)據(jù)5,4,4,3,5,2的眾數(shù)是4
B.若隨機(jī)變量X~N(3,1)則P(X<4)=p,則(2<X<4)=1-2p
C.數(shù)據(jù)2,3,4,5的標(biāo)準(zhǔn)差是數(shù)據(jù)4,6,8,10的標(biāo)準(zhǔn)差的一半
D.頻率分布直方圖中各小長(zhǎng)方形的面積等于相應(yīng)各組的頻數(shù)

分析 A,眾數(shù)是4和5;
B,隨機(jī)變量X~N(3,1),則正太分布曲線關(guān)于x=3對(duì)稱,當(dāng)P(X<4)=p時(shí),則(2<X<4)=2p-1;
C,數(shù)據(jù)2,3,4,5分別是數(shù)據(jù)4,6,8,10的2倍,根據(jù)公式D(ax+b)=a2DX,可判定;
D,頻率分布直方圖中各小長(zhǎng)方形的面積等于相應(yīng)各組的頻率.

解答 解:對(duì)于A,眾數(shù)是4和5,故錯(cuò);
對(duì)于B,隨機(jī)變量X~N(3,1),則正態(tài)分布曲線關(guān)于x=3對(duì)稱,當(dāng)P(X<4)=p時(shí),則(2<X<4)=2p-1,故錯(cuò);
對(duì)于C,∵數(shù)據(jù)2,3,4,5分別是數(shù)據(jù)4,6,8,10的2倍,根據(jù)公式D(ax+b)=a2DX,可判定該命題正確;
對(duì)于D,頻率分布直方圖中各小長(zhǎng)方形的面積等于相應(yīng)各組的頻率,故錯(cuò);
故選:C

點(diǎn)評(píng) 本題考查了命題真假的判定,涉及到了統(tǒng)計(jì)的知識(shí),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=(x2-x-1)ex
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若方程a($\frac{f(x)}{{e}^{x}}$+1)+ex=ex在(0,1)內(nèi)有解,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.如圖,四邊形ABCD是梯形,AB∥CD,AB⊥AD,SA⊥平面ABCD,E、F分別是SC、SD的中點(diǎn),SA=AD=2CD=4AB=4.
(1)求證:EF∥平面SAB;
(2)求證:BE⊥平面SCD;
(3)求二面角B-SD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知全集A={x|x≤9,x∈N*}集合B={x|0<x<7},則A∩B=( 。
A.{x|0<x<7}B.{x|1≤x≤6}C.{1,2,3,4,5,6}D.{7,8,9}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.一個(gè)正三棱柱的正視圖如圖所示,已知它的體積為3,則該正三棱柱的高為(  )
A.1B.$\sqrt{3}$C.3D.3$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知函數(shù)f(x)=ax-$\frac{a}{x}$-lnx(a≠0).
(1)若x=2是函數(shù)f(x)的極值點(diǎn),求a的值;
(2)討論函數(shù)f(x)的單調(diào)區(qū)間;
(3)對(duì)任意的正整數(shù)n,證明:$\frac{3}{1×2}$+$\frac{5}{2×3}$+$\frac{7}{3×5}$+…+$\frac{2n+1}{n(n+1)}$>ln(n+1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.角A是△ABC的一個(gè)內(nèi)角,若命題p:A<$\frac{π}{3}$,命題q:sinA<$\frac{\sqrt{3}}{2}$,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)圓O1和圓O2是兩個(gè)定圓,動(dòng)圓P與這兩個(gè)定圓都相切,則圓P的圓心軌跡可能是( 。
A.①③⑤B.②④⑤C.①②④D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.公元前3世紀(jì),古希臘歐幾里得在《幾何原本》里提出:“球的體積(V)與它的直徑(d)的立方成正比”,此即V=kd3,與此類似,我們可以得到:
(1)正四面體(所有棱長(zhǎng)都相等的四面體)的體積(V)與它的棱長(zhǎng)(a)的立方成正比,即V=ma3;
(2)正方體的體積(V)與它的棱長(zhǎng)(a)的立方成正比,即V=na3;
(3)正八面體(所有棱長(zhǎng)都相等的八面體)的體積(V)與它的棱長(zhǎng)(a)的立方成正比,即V=ta3;
那么m:n:t=(  )
A.1:6$\sqrt{2}$:4B.$\sqrt{2}$:12:16C.$\frac{\sqrt{2}}{12}$:1:$\sqrt{2}$D.$\sqrt{2}$:6:4$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案