精英家教網 > 高中數學 > 題目詳情
15.在平面直角坐標系xoy中,點P是直線3x+4y+3=0上的動點,過點P作圓C:x2+y2-2x-2y+1=0的兩條切線,切點分別是A,B,則|AB|的取值范圍為[$\sqrt{3}$,2).

分析 利用直線和圓的位置關系,求出兩個極端位置|AB|的值,即可得到結論.

解答 解:圓心C(1,1),半徑R=1,要使AB長度最小,則∠ACB最小,即∠PCB最小,
即PC最小即可,由點到直線的距離公式可得d=$\frac{|3+4+3|}{5}$=2
則∠PCB=60°,∠ACB=120°,即|AB|=$\sqrt{3}$,
當點P在3x+4y+3=0無限遠取值時,∠ACB→180°,
此時|AB|→直徑2,
故$\sqrt{3}$≤|AB|<2,
故答案為:[$\sqrt{3}$,2).

點評 本題主要考查直線和圓相切的性質的應用,考查點到直線的距離公式.綜合性較強,有一定的難度.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

5.已知集合A={x|x2-4x-5=0},B={x|x2=25}則A∩B=( 。
A.{-1}B.{5,-1}C.{5}D.{-5,5,-1}

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

6.已知$\overrightarrow{OA}$=(1,1),$\overrightarrow{OB}$=(4,1),$\overrightarrow{OC}$=(4,5),則$\overrightarrow{AB}$與$\overrightarrow{AC}$夾角的余弦值為$\frac{3}{5}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

3.已知正項數列{an},其前n項和為Sn,且an=2$\sqrt{{S}_{n}}$-1.
(1)求數列{an}的通項公式;
(2)bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求數列{bn}的前n項和.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

10.直線ax-y+3=0與圓(x-2)2+(y-a)2=4相交于M,N兩點,若|MN|≥2$\sqrt{3}$,則實數a的取值范圍是a≤-$\frac{4}{3}$.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

20.已知(x0,y0,z0)是關于x、y、z的方程組$\left\{\begin{array}{l}{ax+by+cz=0}\\{cx+ay+bz=0}\\{bx+cy+az=0}\end{array}$的解.
(1)求證:$|\begin{array}{l}{a}&&{c}\\{c}&{a}&\\&{c}&{a}\end{array}|$=(a+b+c)•$|\begin{array}{l}{a}&&{1}\\{c}&{a}&{1}\\&{c}&{1}\end{array}|$;
(2)設z0=1,a、b、c分別為△ABC三邊長,試判斷△ABC的形狀,并說明理由;
(3)設a、b、c為不全相等的實數,試判斷“a+b+c=0”是“x02+y02+z02>0”的④條件,并證明:①充分非必要;②必要非充分;③充分且必要;④非充分非充要.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

7.已知函數f(x)=sin(ωx+φ)+cos(ωx+φ)(ω>0,0<φ<π)是奇函數,直線y=$\sqrt{2}$與函數f(x)的圖象的兩個相鄰交點的橫坐標之差的絕對值為$\frac{π}{2}$,則( 。
A.f(x)在$(0,\frac{π}{4})$上單調遞減B.f(x)在$(\frac{π}{8},\frac{3π}{8})$上單調遞減
C.f(x)在$(0,\frac{π}{4})$上單調遞增D.f(x)在$(\frac{π}{8},\frac{3π}{8})$上單調遞增

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

4.如圖是某企業(yè)2010年至2016年污水凈化量(單位:噸)的折線圖.

注:年份代碼1~7分別對應年份2010~2016.
(1)由折線圖看出,可用線性回歸模型擬合y和t的關系,請用相關系數加以說明;
(2)建立y關于t的回歸方程,預測2017年該企業(yè)污水凈化量;
(3)請用數據說明回歸方程預報的效果.
附注:參考數據:$\overline{y}$=54,$\sum_{i=1}^{7}$(ti-$\overline{t}$)(yi-$\overline{y}$)=21,$\sqrt{14}$≈3.74,$\sum_{i=1}^{7}$(yi-$\stackrel{∧}{{y}_{i}}$ )2=$\frac{9}{4}$.
參考公式:相關系數r=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$,回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}{a}$+$\stackrel{∧}$t中斜率和截距的最小二乘估計公式分別為$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}({t}_{i}-\overline{t})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({t}_{i}-\overline{t})^{2}}$,$\stackrel{∧}{a}$=$\overline{y}$-$\stackrel{∧}$$\overline{t}$.
反映回歸效果的公式為R2=1-$\frac{\sum_{i=1}^{n}({y}_{i}-\stackrel{∧}{{y}_{i}})^{2}}{\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}$,其中R2越接近于1,表示回歸的效果越好.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

5.將石子擺成如圖所示的梯形形狀,稱數列5,9,14,20,…為“梯形數”.根據圖形的構成,此數列的第100項,即a100=5252.

查看答案和解析>>

同步練習冊答案