19.2月21日教育部舉行新聞發(fā)布會,介紹2017年全國靑少年校園足球工作計劃,提出將著力提高校園足球特色學校的建設質(zhì)量和水平,爭取提前完成建設2萬所校園足球特色學校,到2025年校園足球特色學校將達到5萬所.為了調(diào)查學生喜歡足球是否與性別有關,從某足球特色學校抽取了50名同學進行調(diào)查,得到以下數(shù)據(jù)(單位:人):
喜愛不喜愛合計
男同學24630
女同學61420
合計302050
(1)能否在犯錯概率不超過0.001的前提下認為喜愛足球與性別有關?
(2)現(xiàn)從30個喜愛足球的同學中按分層抽樣的方法抽出5人,再從里面任意選出2人對其訓練情況進行全程跟蹤調(diào)查,求選出的剛好是一男一女的概率.
附表及公式:
P(K2≥k00.1000.0500.0100.001
k02.7063.8416.63510.828
${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({a+d})({a+c})({b+d})}}$,其中n=a+b+c+d.

分析 (1)由表中數(shù)據(jù)計算得K2,對照臨界值得出結(jié)論;
(2)用列舉法求出基本事件數(shù),計算所求的概率值.

解答 解:(1)由表中數(shù)據(jù)計算得K2的觀測值為
${K^2}=\frac{{50×{{({24×14-6×6})}^2}}}{30×20×30×20}=\frac{25}{2}=12.5>10.828$,
所以在犯錯概率不超過0.001的前提下認為喜愛足球與性別有關;
(2)從30個喜愛足球的同學中按分層抽樣的方法抽出5人,
則有4名男生,1名女生,記4個男同學為,a,b,c,d;
女同學為A,從中再任意選出2人,則所有選法是
(a,b),(a,c),(a,d),(a,A),(b,c),
(b,d),(b,A),(c,d),(c,A),(d,A)共10種,
剛好是一男一女的情況有4種,
故所求的概率為$P=\frac{4}{10}=\frac{2}{5}$.

點評 本題考查了獨立性檢驗與列舉法求古典概型的概率問題,是基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

9.焦點在y軸上的雙曲線的一條漸近線方程為$y=\frac{3}{4}x$,則該雙曲線的離心率為( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{3\sqrt{7}}{7}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.設復數(shù)z的共軛復數(shù)為$\overline z$,滿足z+$\overline z=z•\overline z=2$,則${({\frac{\overline z}{z}})^{2017}}$=(  )
A.±iB.iC.-iD.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.復數(shù)z滿足$\frac{1+i}{z}=\frac{i}{1+2i}(i$為虛數(shù)單位),則z=( 。
A.3+iB.3-iC.-3+iD.-3-i

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

14.已知點P(2,1)是拋物線上x2=4y上的一點,點M,N是拋物線上的動點(M,N,P三點不共線),直線PM,PN分別交y軸于A,B兩點,且|PA|=|PB|,則直線MN的斜率為-1.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知等比數(shù)列{an}的前n項和為Sn,公比為$\frac{3}{2}$.
(1)若${S_4}=\frac{65}{24}$,求a1
(2)若a1=2,${c_n}=\frac{1}{2}{a_n}+bn$,且c2,c4,c5成等差數(shù)列,求b.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知α∈(0,$\frac{π}{2}$),試比較α,sinα,tanα的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.航空測量組的飛機航線和山頂在同一鉛直平面內(nèi),已知飛機的高度為海拔10千米,速度為180千米/小時,飛機先看到山頂?shù)母┙菫?5°,經(jīng)過420秒后又看到山頂?shù)母┙菫?5°,則山頂?shù)暮0胃叨葹椋ㄈ?\sqrt{2}=1.4$,$\sqrt{3}=1.7$)(  )
A.2.65千米B.7.35千米C.10千米D.10.5千米

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知△ABC的面積為8,cosA=$\frac{3}{5}$,D為BC上一點,$\overrightarrow{AD}$=$\frac{1}{4}$$\overrightarrow{AB}$+$\frac{3}{4}$$\overrightarrow{AC}$,過點D做AB,AC的垂線,垂足分別為E,F(xiàn),則$\overrightarrow{DE}$•$\overrightarrow{DF}$=-$\frac{36}{25}$.

查看答案和解析>>

同步練習冊答案