A. | 2.65千米 | B. | 7.35千米 | C. | 10千米 | D. | 10.5千米 |
分析 利用正弦定理求出飛機到山頂?shù)木嚯x,再利用三角函數(shù)的定義得出山頂?shù)里w機航向的距離,從而得出山頂海拔.
解答 解:設飛機先后飛過的兩個位置為A,B,山頂為C,過C作AB的垂線,垂足為D,
由題意可知AB=180×$\frac{420}{3600}$=21千米,∠BAC=15°,∠ABC=135°,
∴∠ACB=30°,
在△ABC中,由正弦定理得$\frac{AB}{sin∠ACB}=\frac{AC}{sin∠ABC}$,即$\frac{21}{sin30°}=\frac{AC}{sin135°}$,
∴AC=$\frac{21sin135°}{sin30°}$=21$\sqrt{2}$,
∴CD=ACsin∠BAC=21$\sqrt{2}$•sin15°=$\frac{21(\sqrt{3}-1)}{2}$≈7.35千米,
∴山頂海拔高度h=10-7.35=2.65千米.
故選:A.
點評 本題考查了解三角形的實際應用,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
喜愛 | 不喜愛 | 合計 | |
男同學 | 24 | 6 | 30 |
女同學 | 6 | 14 | 20 |
合計 | 30 | 20 | 50 |
P(K2≥k0) | 0.100 | 0.050 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,0) | B. | ($\frac{4}{3}$,0) | ||
C. | (-∞,0)∪($\frac{4}{3}$,0) | D. | (-∞,-$\frac{1}{3}$)∪(-$\frac{1}{3}$,0)∪($\frac{4}{3}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {1,2,4,5} | B. | {2,4,5} | C. | {1,2,5} | D. | {2,5} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [-3e-4,1) | B. | [-3e-4,1)∪{-e-2} | C. | [0,1)∪{-e-2} | D. | [0,1) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com