9.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c,且a=2b,3bsinC=c,則sinA等于(  )
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{9}$D.$\frac{9}{16}$

分析 直接利用正弦定理求解即可.

解答 解:a=2b,3bsinC=c,
由正弦定理$\frac{a}{sinA}=\frac{c}{sinC}$,
則有:$\frac{2b}{sinA}$=$\frac{3bsinC}{sinC}$,
解得:sinA=$\frac{2}{3}$.
故選:A.

點(diǎn)評(píng) 本題考查三角形的正弦定理的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知雙曲線過點(diǎn)$(3,\sqrt{15})$,漸進(jìn)線方程為$y=±\sqrt{3}x$,圓C經(jīng)過雙曲線的一個(gè)頂點(diǎn)和一個(gè)焦點(diǎn),且圓心在雙曲線上,則圓心到該雙曲線的中心的距離為(  )
A.3B.$\sqrt{5}$C.$2\sqrt{6}$D.$\sqrt{15}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.一個(gè)圓的圓心在拋物線y2=4x上,且該圓經(jīng)過拋物線的頂點(diǎn)和焦點(diǎn),若圓心在第一象限,圓心到直線ax+y-$\sqrt{2}$=0的距離為$\frac{\sqrt{2}}{4}$,則a=( 。
A.1B.-1C.±1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)P(2,1),直線l:x-y-4=0,則點(diǎn)P到直線l的距離為$\frac{3\sqrt{2}}{2}$,點(diǎn)P關(guān)于直線l對(duì)稱點(diǎn)的坐標(biāo)為(5,-2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知tan($\frac{π}{4}$+α)=-2
(Ⅰ)求tanα
(Ⅱ)設(shè)β∈(0,π),且滿足$\sqrt{3}$sinβcosβ+cos2β=-$\frac{5}{4}$cos2α,求β.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.“x>1”是“${log_{\frac{1}{2}}}(x+2)<0$”的(  )條件.
A.充要B.必要不充分
C.充分不必要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.如果函數(shù)f(x)對(duì)任意的實(shí)數(shù)x,都有f(x)=f(1-x),且當(dāng)$x≥\frac{1}{2}$時(shí),f(x)=log2(3x-1),那么函數(shù)f(x)在[-2,0]的最大值與最小值之差為(  )
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知函數(shù)f(x)=x2-2x,g(x)=lnx,函數(shù)F(x)=$\left\{\begin{array}{l}{f(x),f(x)≥g(x)}\\{g(x),f(x)<g(x)}\end{array}\right.$,則函數(shù) F(x)的所有零點(diǎn)的和為(  )
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.電視傳媒公司為了解某地區(qū)電視觀眾對(duì)某類體育節(jié)目的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾日均收看該體育節(jié)目時(shí)間的頻率分布直方圖:
非體育迷體育迷合計(jì)
1055
合計(jì)
將日均收看該體育節(jié)目時(shí)間不低于40分鐘的觀眾稱為“體育迷”.
(1)根據(jù)已知條件完成上面的2×2列聯(lián)表,若按95%的可靠性要求,并據(jù)此資料,你是否認(rèn)為“體
育迷”與性別有關(guān)?
(2)現(xiàn)在從該地區(qū)非體育迷的電視觀眾中,采用分層抽樣方法選取5名觀眾,求從這5名觀眾選取兩人進(jìn)行訪談,被抽取的2名觀眾中至少有一名女生的概率.
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$
P(K2≥k)0.050.01
k3.8416.635

查看答案和解析>>

同步練習(xí)冊(cè)答案