已知函數(shù)f(x)=
3x(x≤0)
log3x(x>0)
,則f[f(
1
2
)]
=( 。
A、-1
B、2
C、
3
D、
1
2
考點:函數(shù)的值
專題:函數(shù)的性質及應用
分析:利用分段函數(shù)的性質求解.
解答: 解:∵函數(shù)f(x)=
3x(x≤0)
log3x(x>0)
,
∴f(
1
2
)=log3
1
2
,
f[f(
1
2
)]
=3log3
1
2
=
1
2

故選:D.
點評:本題考查函數(shù)值的求法,是基礎題,解題時要認真審題,注意函數(shù)性質的合理運用.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

若P為橢圓
x2
25
+
y2
9
=1上一點,F(xiàn)1、F2為焦點,∠F1PF2=60°,求P點坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設△ABC的內角A,B,C所對邊的長分別為a,b,c,且a=bcosC+
3
3
csinB

(1)求B;
(2)若c=1,a=3,AC的中點為D,求BD的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中,“∠C=90°”是“cosA-cosB=sinB-sinA”的(  )
A、充分不必要條件
B、充要條件
C、必要不充分條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若角β的終邊落在經過點(
3
,-1)的直線上,寫出β的集合;當β∈(-360°,360°)時,求β.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的偶函數(shù)f(x)在區(qū)間[0,+∞)上單調遞減,則滿足f(2x-1)≥f(1)的x取值范圍是(  )
A、[0,1]
B、[1,+∞)
C、(-∞,0]
D、(-∞,0]∪[1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

拋物線y=ax2的焦點為F(0,1),P為該拋物線上的動點,則a=
 
;線段FP中點M的軌跡方程為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)是定義在R上單調遞減的奇函數(shù),則滿足不等式f[f(t-1)]<0的實數(shù)t的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=sin(ωx+
π
6
)+sin(ωx-
π
6
)-2cos2
ωx
2
,x∈R
(其中ω>0)
(I)求函數(shù)f(x)的值域;
(II)若函數(shù)y=f(x)的圖象與直線y=-1的兩個相鄰交點間的距離為
π
2
,求函數(shù)y=f(x)的單調增區(qū)間.
(Ⅲ)設g(x)=-4cos2x-sinx+m,若對任意x1∈R,總是存在x2∈[0,
π
2
],使得f(x1)≥g(x2),求實數(shù)m的取值范圍.

查看答案和解析>>

同步練習冊答案