【題目】已知函數(shù)的圖象如圖所示,令,則下列關(guān)于函數(shù)的說法中不正確的是( )

A. 函數(shù)圖象的對稱軸方程為

B. 函數(shù)的最大值為

C. 函數(shù)的圖象上存在點,使得在點處的切線與直線平行

D. 方程的兩個不同的解分別為,則最小值為

【答案】C

【解析】

根據(jù)函數(shù)fx)的圖象求出A、T、ω和的值,寫出fx)的解析式,求出f′(x),寫出gx)=fx)+f′(x)的解析式,再判斷題目中的選項是否正確.

根據(jù)函數(shù)fx)=Asin(ωx+)的圖象知,

A=2,,

T=2π,ω1;

根據(jù)五點法畫圖知,

當(dāng)x時,ωx+

,

fx)=2sin(x);

f′(x)=2cos(x),

gx)=fx)+f′(x

=2sin(x)+2cos(x

=2sin(x

=2sin(x);

xkπ,k∈Z,

解得xkπ,k∈Z,

∴函數(shù)gx)的對稱軸方程為xkπ,k∈Z,A正確;

當(dāng)x2kπ,k∈Z時,函數(shù)gx)取得最大值2,B正確;

g′(x)=2cos(x),

假設(shè)函數(shù)gx)的圖象上存在點Px0,y0),使得在P點處的切線與直線ly=3x﹣1平行,

kg′(x0)=2cos(x0)=3,

解得cos(x01,顯然不成立,

所以假設(shè)錯誤,即C錯誤;

方程gx)=2,則2sin(x)=2,

∴sin(x,

x2kπ或x2kπ,k∈Z;

∴方程的兩個不同的解分別為x1x2時,

|x1x2|的最小值為,D正確.

故選:C

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在點處的切線與直線平行.

(Ⅰ)求實數(shù)的值;

(Ⅱ)設(shè)

i)若函數(shù)上恒成立,求的最大值;

ii)當(dāng)時,判斷函數(shù)有幾個零點,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知四棱錐的底面為直角梯形,底面,且,,的中點.

(1)證明:面;

(2)求夾角的余弦值;

(3)求面與面所成二面角余弦值的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】10種不同的作物種子中選出6種分別放入6個不同的瓶子中,每瓶不空,如果甲、乙兩種種子都不許放入第一號瓶子內(nèi),那么不同的放法共有( 

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知點,過直線左側(cè)的動點于點的角平分線交軸于點,且,記動點的軌跡為曲線

1)求曲線的方程;

2)過點作直線交曲線兩點,點上,且軸,試問:直線是否恒過定點?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)當(dāng)時,求函數(shù)的單調(diào)區(qū)間;

2)若函數(shù)有零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線,直線 與拋物線交于,兩點.

(1)若以為直徑的圓與軸相切,求該圓的方程;

(2)若直線軸負(fù)半軸相交,求(為坐標(biāo)原點)面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知雙曲線:的左、右焦點分別為、,為坐標(biāo)原點,是雙曲線在第一象限上的點,直線交雙曲線左支于點,直線 交雙曲線右支于點,若,且,則雙曲線的漸近線方程為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,直線的傾斜角為,且經(jīng)過點.以坐標(biāo)原點O為極點,x軸正半軸為極軸建立極坐標(biāo)系,直線,從原點O作射線交于點M,點N為射線OM上的點,滿足,記點N的軌跡為曲線C.

(Ⅰ)求出直線的參數(shù)方程和曲線C的直角坐標(biāo)方程;

(Ⅱ)設(shè)直線與曲線C交于P,Q兩點,求的值.

查看答案和解析>>

同步練習(xí)冊答案