二次函數(shù)f(x)=ax2+bx+c的系數(shù)均為整數(shù),若α,β∈(1,2),且α,β是方程f(x)=0兩個(gè)不等的實(shí)數(shù)根,則最小正整數(shù)a的值為
 
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由題意得不等式組,從而得到
a
-
c
>1,由c最小為1,得到
a
>2,從而求出a的最小正整數(shù)值.
解答: 解:∵α、β∈(1,2),且α、β是方程f(x)=0兩個(gè)不相等的實(shí)數(shù)根,且a>0,
1<-
b
2a
<2
a+b+c>0
4a+2b+c>0
b2-4ac>0
,
∴a+c>-b>2
ac

∴a+c>1+2
ac
,
∴a+c-2
ac
>1,
(
a
-
c
)
2
>1,
a
-
c
>1,
∵c最小為1,即
a
-1>1,
a
>2,
因?yàn)閍為整數(shù),∴a≥5,
故答案為:5.
點(diǎn)評(píng):本題考查了二次函數(shù)的性質(zhì),考查了轉(zhuǎn)化思想,是一道中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知sinα=0.80,α∈(0,
π
2
),求sin2α的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若實(shí)數(shù)x,y滿足x+y-4≥0,則z=x2+y2+6x-2y+10的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知(2m-
2
2
9(m∈R)展開式的第7項(xiàng)為
21
4
,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

袋中裝有4個(gè)大小相同、標(biāo)號(hào)分別為1,2,3,4的小球,依次從袋中取出所有的球,則“標(biāo)號(hào)順序不符合從小到大或從大到小排列”的概率為(  )
A、
1
12
B、
1
6
C、
5
6
D、
11
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)的定義域
(1)y=
tanx+1
 
(2)y=
sinx
tanx

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x-2)(x+a),其中a∈R.
(Ⅰ)若f(x)的圖象關(guān)于直線x=1對(duì)稱,求a的值;
(Ⅱ)求f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知中心在原點(diǎn)O,左焦點(diǎn)為F1(-1,0)的橢圓C的左頂點(diǎn)為A,上頂點(diǎn)為B,F(xiàn)1到直線AB的距離為
7
7
|OB|.
(1)求橢圓C的方程;
(2)若橢圓C1方程為:
x2
m2
+
y2
n2
=1(m>n>0),橢圓C2方程為:
x2
m2
+
y2
n2
=λ(λ>0,且λ≠1),則稱橢圓C2是橢圓C1的λ倍相似橢圓.已知C2是橢圓C的3倍相似橢圓,若橢圓C的任意一條切線l交橢圓C2于兩點(diǎn)M、N,試求弦長(zhǎng)|MN|的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足a1=-1,a2>a1,|an+1-an|=2n(n∈N*),若數(shù)列{a2n-1}單調(diào)遞減,數(shù)列{a2n}單調(diào)遞增,則數(shù)列{an}的通項(xiàng)公式為an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案