精英家教網 > 高中數學 > 題目詳情

【題目】某景區(qū)的各景點從2009年取消門票實行免費開放后,旅游的人數不斷地增加,不僅帶動了該市淡季的旅游,而且優(yōu)化了旅游產業(yè)的結構,促進了該市旅游向“觀光、休閑、會展”三輪驅動的理想結構快速轉變.下表是從2009年至2018年,該景點的旅游人數(萬人)與年份的數據:

1

2

3

4

5

6

7

8

9

10

旅游人數(萬人)

300

283

321

345

372

435

486

527

622

800

該景點為了預測2021年的旅游人數,建立了的兩個回歸模型:

模型①:由最小二乘法公式求得的線性回歸方程

模型②:由散點圖的樣本點分布,可以認為樣本點集中在曲線的附近.

(1)根據表中數據,求模型②的回歸方程.(精確到個位,精確到0.01).

(2)根據下列表中的數據,比較兩種模型的相關指數,并選擇擬合精度更高、更可靠的模型,預測2021年該景區(qū)的旅游人數(單位:萬人,精確到個位).

回歸方程

30407

14607

參考公式、參考數據及說明:

①對于一組數據,其回歸直線的斜率和截距的最小二乘法估計分別為

②刻畫回歸效果的相關指數

③參考數據:,

5.5

449

6.05

83

4195

9.00

表中

【答案】(1) (2)見解析

【解析】

1)對取對數,得, ,先建立關于的線性回歸方程,進而可得結果;(2)由表格中的數據, 30407>14607,可得,從而得 ,進而可得結果.

(1)對取對數,得,

,先建立關于的線性回歸方程,

,

模型②的回歸方程為

(2)由表格中的數據,有30407>14607,即,

,

模型①的相關指數小于模型②的,說明回歸模型②的擬合效果更好.

2021年時,,預測旅游人數為(萬人)

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】在平面直角坐標系中,曲線過點,其參數方程為為參數, ),以為極點, 軸非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.

(1)求曲線的普通方程和曲線的直角坐標方程;

(2)求已知曲線和曲線交于兩點,且,求實數的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖1,矩形中,,邊上異于端點的動點,,將矩形沿折疊至處,使面(如圖2).點滿足,.

(1)證明:

(2)設,當為何值時,四面體的體積最大,并求出最大值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知

(1)求函數的極值;

(2),對于任意,總有成立,求實數的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點是直線)上一動點, 是圓的兩條切線, 、為切點, 為圓心,若四邊形面積的最小值是,則的值是( )

A. B. C. D.

【答案】D

【解析】∵圓的方程為: ,

∴圓心C(0,1),半徑r=1.

根據題意,若四邊形面積最小,當圓心與點P的距離最小時,即距離為圓心到直線l的距離最小時,切線長PA,PB最小。切線長為4,

∴圓心到直線l的距離為.

∵直線

,解得,

所求直線的斜率為

故選D.

型】單選題
束】
19

【題目】拋物線的焦點為,準線為,經過且斜率為的直線與拋物線在軸上方的部分相交于點, ,垂足為,則的面積是 ( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】隨著科技的發(fā)展,網購已經逐漸融入了人們的生活.在家里面不用出門就可以買到自己想要的東西,在網上付款即可,兩三天就會送到自己的家門口,如果近的話當天買當天就能送到,或者第二天就能送到,所以網購是非常方便的購物方式.某公司組織統(tǒng)計了近五年來該公司網購的人數(單位:人)與時間(單位:年)的數據,列表如下:

1

2

3

4

5

24

27

41

64

79

(1)依據表中給出的數據,是否可用線性回歸模型擬合的關系,請計算相關系數并加以說明(計算結果精確到0.01).(若,則線性相關程度很高,可用線性回歸模型擬合)

附:相關系數公式 ,參考數據.

(2)建立關于的回歸方程,并預測第六年該公司的網購人數(計算結果精確到整數).

(參考公式: ,

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知、分別為雙曲線的左右焦點,左右頂點為,是雙曲線上任意一點,則分別以線段、為直徑的兩圓的位置關系為( )

A. 相交B. 相切C. 相離D. 以上情況均有可能

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=|ax-2|,不等式f(x)≤4的解集為{x|-2≤x≤6}.

(1)求實數a的值;

(2)設g(x)=f(x)+f(x+3),若存在x∈R,使g(x)-tx≤2成立,求實數t的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某企業(yè)為確定下一年投入某種產品的研發(fā)費用,需了解年研發(fā)費用(單位:千萬元)對年銷售量(單位:千萬件)的影響,統(tǒng)計了近年投入的年研發(fā)費用與年銷售量的數據,得到散點圖如圖所示:

(Ⅰ)利用散點圖判斷,(其中,為大于的常數)哪一個更適合作為年研發(fā)費用和年銷售量的回歸方程類型(只要給出判斷即可,不必說明理由);

(Ⅱ)對數據作出如下處理:令,,得到相關統(tǒng)計量的值如下表:

根據(Ⅰ)的判斷結果及表中數據,求關于的回歸方程;

(Ⅲ)已知企業(yè)年利潤(單位:千萬元)與,的關系為(其中),根據(Ⅱ)的結果,要使得該企業(yè)下一年的年利潤最大,預計下一年應投入多少研發(fā)費用?

附:對于一組數據,其回歸直線的斜率和截距的最小二乘估計分別為,

查看答案和解析>>

同步練習冊答案