18.若a=log30.5,b=30.5,c=0.53,則a,b,c三個(gè)數(shù)的大小關(guān)系是( 。
A.a<b<cB.b<c<aC.a<c<bD.c<a<b

分析 利用對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性直接求解.

解答 解:∵a=log30.5<log31=0,
b=30.5>30=1,
0<c=0.53<0.50=1,
∴a,b,c三個(gè)數(shù)的大小關(guān)系為a<c<b.
故選:C.

點(diǎn)評 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對數(shù)函數(shù)、指數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.如圖,在四棱錐P-ABCD中,底面ABCD是正方形,AC與BD交于點(diǎn)O,PC⊥底面ABCD,E為PB上一點(diǎn),G為PO中點(diǎn).
(1)若PD∥平面ACE,求證:E為PB的中點(diǎn);
(2)若AB=$\sqrt{2}$PC,求證:CG⊥平面PBD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知函數(shù)f(x)=|x-a|+|x-1|(a>0)的最小值是2,則a的值是3,不等式f(x)≥4的解集是(-∞,0]∪[4,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x2-3x.若方程f(x)+x-t=0恰有兩個(gè)相異實(shí)根,則實(shí)數(shù)t的所有可能值為{-1,1}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知橢圓E的右焦點(diǎn)與拋物線y2=4x的焦點(diǎn)重合,點(diǎn)M$(1,\frac{3}{2})$在橢圓E上.
(Ⅰ)求橢圓E的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)P(-4,0),直線y=kx+1與橢圓E交于A,B兩點(diǎn),若∠APO=∠BPO,(其中O為坐標(biāo)原點(diǎn)),
求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.當(dāng)函數(shù)f(x)=sinx+$\sqrt{3}$cos(π+x)(0≤x<2π)取得最小值時(shí),x=$\frac{11π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知(1-x)5=a0+a1x+a2x2+a3x3+a5x5,則(a0+a2+a4)(a1+a3+a5)的值等于-256.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若x、y滿足約束條件$\left\{\begin{array}{l}{x-y+1≥0}\\{x-2y≤0}\\{x+2y-2≤0}\end{array}\right.$,則z=x+y的最小值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知直線l過定點(diǎn)P(-2,0),圓C的方程為:x2+y2-8y+12=0,
(Ⅰ)若直線l與圓C相切,求直線l的方程;
(Ⅱ)若直線l與圓C相交于A,B兩點(diǎn),且$\overrightarrow{CA}•\overrightarrow{CB}=0$,求直線l的方程.

查看答案和解析>>

同步練習(xí)冊答案