6.定義在R上的周期為2的函數(shù),滿足f(2+x)=f(2-x),在[-3,-2]上是減函數(shù),若A,B是銳角三角形的兩個內(nèi)角,則( 。
A.f(sinA)>f(cosB)B.f(cosB)>f(sinA)C.f(sinA)>f(sinB)D.f(cosB)>f(cosA)

分析 由題意可得f(x)的圖象關(guān)于直線x=2對稱,且在[-1,0]遞減,即有f(-x)=f(x),可得f(x)為偶函數(shù),可得f(x)在[0,1]遞增,由A,B是銳角三角形的兩個內(nèi)角,可得A+B>$\frac{π}{2}$,運用誘導(dǎo)公式和正弦函數(shù)的圖象和性質(zhì),結(jié)合f(x)的單調(diào)性,即可得到結(jié)論.

解答 解:定義在R上的周期為2的函數(shù),滿足f(2+x)=f(2-x),在[-3,-2]上是減函數(shù),
可得f(x)的圖象關(guān)于直線x=2對稱,且在[-1,0]遞減,
由f(-x)=f(4+x),且f(x+4)=f(x),
即有f(-x)=f(x),可得f(x)為偶函數(shù),
可得f(x)在[0,1]遞增,
由A,B是銳角三角形的兩個內(nèi)角,可得A+B>$\frac{π}{2}$,
即$\frac{π}{2}$>A>$\frac{π}{2}$-B>0,
可得sinA>sin($\frac{π}{2}$-B)=cosB,
由sinA,cosB∈(0,1),
可得f(sinA)>f(cosB).
故選:A.

點評 本題考查函數(shù)的周期性和對稱性、奇偶性的判斷和運用,考查單調(diào)性的運用,以及正弦函數(shù)的圖象和性質(zhì),考查運算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知雙曲線的焦點分別為(0,-2)、(0,2),且經(jīng)過點P(-3,2),則雙曲線的標準方程是( 。
A.$\frac{x^2}{3}-{y^2}$=1B.$\frac{y^2}{3}-{x^2}$=1C.y2-$\frac{x^2}{3}$=1D.$\frac{x^2}{2}-\frac{y^2}{2}$=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.在如圖所示的正四棱柱ABCD-A1B1C1D1中,E、F分別是棱B1B、AD的中點,直線BF與平面AD1E的位置關(guān)系是(  )
A.平行B.相交但不垂直C.垂直D.異面

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.下列四個命題中是真命題的是( 。
A.x>3是x>5的充分條件B.x2=1是x=1的充分條件
C.a>b是ac2>bc2的必要條件D.$α=\frac{π}{2}是sinα=1的必要條件$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知等差數(shù)列{an}滿足an>1,其前n項和Sn滿足6Sn=an2+3an+2
(1)求數(shù)列{an}的通項公式及前n項和Sn;
(2)設(shè)數(shù)列{bn}滿足bn=$\frac{1}{{a}_{n}{a}_{n+1}}$,且其前n項和為Tn,證明:$\frac{1}{10}$≤Tn<$\frac{1}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知函數(shù)f(x)=$\frac{{e}^{2x}+1}{{e}^{2x}-1}$,則y=f(x)的大致圖象為( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.近來雞蛋價格起伏較大,假設(shè)第一周、第二周雞蛋價格分別為a元/斤、b元/斤,家庭主婦甲和乙買雞蛋的方式不同:家庭主婦甲每周買3斤雞蛋,家庭主婦乙每周買10元錢的雞蛋,試比較誰的購買方式更優(yōu)惠(兩次平均價格低視為實惠)乙(在橫線上填甲或乙即可)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.下列函數(shù)中,在區(qū)間(0,+∞)上是增函數(shù)的是( 。
A.y=-x2+1B.y=x-2C.y=log2xD.y=($\frac{1}{2}$)x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)$f(x)=|x|+{2^x}-\frac{1}{2}({x<0})$與g(x)=|x|+log2(x+a)的圖象上存在關(guān)于y軸對稱的點,則a的取值范圍是( 。
A.$({-∞,-\sqrt{2}})$B.$({-∞,\sqrt{2}})$C.$({-∞,2\sqrt{2}})$D.$({-2\sqrt{2},\frac{{\sqrt{2}}}{2}})$

查看答案和解析>>

同步練習(xí)冊答案