【題目】已知函數(shù),

)當時,求曲線在點處的切線方程;

)當時,求證:上為增函數(shù);

)若在區(qū)間上有且只有一個極值點,求的取值范圍

【答案】證明如下;

【解析】

試題由題可知,當時,函數(shù),求曲線在點處的切線方程,則滿足,通過點斜式直線方程,,可求出直線方程;時,函數(shù),求出導數(shù),令,通過對求導,得到的單調(diào)性為在上是減函數(shù),在上是增函數(shù),于是函數(shù)時取得最小值,因此,故函數(shù)上為增函數(shù)對函數(shù)求導,

,進行討論,當時,函數(shù)上為增函數(shù),將端點值代入,得到一正一負,即存在為函數(shù)在區(qū)間上唯一的極小值點,當時,函數(shù)上為增函數(shù),將端點值代入,得到,因此函數(shù)無極值點,當時,當時,總有成立,即成立,故函數(shù)在區(qū)間上為單調(diào)遞增函數(shù),所以在區(qū)間上無極值

試題解析:解:函數(shù)定義域為,

)當時,,

所以

所以曲線在點處的切線方程是,

時,

,則

得,,注意到,所以

得,注意到,得

所以函數(shù)上是減函數(shù),在上是增函數(shù)

所以函數(shù)時取得最小值,且

所以上恒大于零

于是,當,恒成立

所以當時,函數(shù)上為增函數(shù)

)問另一方法提示:當時,

由于上成立,即可證明函數(shù)上為增函數(shù)

)(

,

1)當時,上恒成立,

即函數(shù)上為增函數(shù)

,,則函數(shù)在區(qū)間上有且只有一個零點,使,且在上,,在上,,故為函數(shù)在區(qū)間上唯一的極小值點;

(2)當時,當時,成立,函數(shù)在區(qū)間上為增函數(shù),又此時,所以函數(shù)在區(qū)間恒成立,即,

故函數(shù)在區(qū)間為單調(diào)遞增函數(shù),所以在區(qū)間上無極值;

(3)當時,

時,總有成立,即成立,故函數(shù)在區(qū)間上為單調(diào)遞增函數(shù),所以在區(qū)間上無極值

綜上所述

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】某企業(yè)為了解下屬某部門對本企業(yè)職工的服務情況,隨機訪問50名職工,根據(jù)這50名職工對該部門的評分,繪制頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為

(1)求頻率分布圖中的值,并估計該企業(yè)的職工對該部門評分不低于80的概率;

(2)從評分在的受訪職工中,隨機抽取2人,求此2人評分都在的概率..

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在多面體ABCDFE中,四邊形ABCD是矩形,AB∥EF,AB=2EF,∠EAB=90°,平面ABFE⊥平面ABCD.

(1)若G點是DC的中點,求證:FG∥平面AED.

(2)求證:平面DAF⊥平面BAF.

(3)若AE=AD=1,AB=2,求三棱錐D-AFC的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】《九章算術》是我國古代的數(shù)學名著,書中有如下間題:“今有甲、乙、丙、丁、戊五人分五餞,令上二人所得與下三人等,且五人所得錢按順序等次差,問各得幾何?”其意思為“甲、乙、丙、丁、戊五人分五錢,甲、乙兩人所得與丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差數(shù)列,問五人各得多少錢(錢:古代一種重量單位)?”這個問題中丙所得為( )

A. B. C. 1錢 D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列命題中的說法正確的是( )

A. 若向量,則存在唯一的實數(shù)使得;

B. 命題“若,則”的否命題為“若,則”;

C. 命題“,使得”的否定是:“,均有”;

D. 命題“在中,的充要條件”的逆否命題為真命題.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設實部為正數(shù)的復數(shù)z滿足,且(1+2i)z在復平面上對應的點在第一、三象限的角平分線上.

1)求復數(shù)z;

2)若為純虛數(shù) , m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某少數(shù)民族的刺繡有著悠久的歷史,如圖4①,②,③,④為她們刺繡最簡單的四個圖案,這些圖案都是由小正方形構成,小正方形數(shù)越多刺繡越漂亮.現(xiàn)按同樣的規(guī)律刺繡(小正方形的擺放規(guī)律相同),設第n個圖形包含f(n)個小正方形.

(1)求出f(5)的值;

(2)利用合情推理的“歸納推理思想”,歸納出f(n+1)與f(n)之間的關系式,并根據(jù)你得到的關系式求出f(n)的表達式;

(3)求的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】袋中裝有3個白球,4個黑球,從中任取3個球,則

①恰有1個白球和全是白球;

②至少有1個白球和全是黑球;

③至少有1個白球和至少有2個白球;

④至少有1個白球和至少有1個黑球.

在上述事件中,是互斥事件但不是對立事件的為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)求函數(shù)的圖象在處的切線方程;

(2)若函數(shù)上有兩個不同的零點,求實數(shù)的取值范圍;

(3)是否存在實數(shù),使得對任意的,都有函數(shù)的圖象在的圖象的下方?若存在,請求出最大整數(shù)的值;若不存在,請說理由.

(參考數(shù)據(jù): , ).

查看答案和解析>>

同步練習冊答案