12.不等式$\frac{ax+1}{x+b}>1$的解集為(-∞,-1)∪(3,+∞),則不等式x2+bx-2a<0的解集為( 。
A.(-2,5)B.(-0.5,0.2)C.(-2,1)D.(-0.5,1)

分析 由已知中不等式$\frac{ax+1}{x+b}>1$的解集為(-∞,-1)∪(3,+∞),可得a-1>0,{-b,$\frac{b-1}{a-1}$}={-1,3},即a=5,b=-3,則不等式x2+bx-2a<0可化為:x2-3x-10<0,解得答案.

解答 解:若不等式$\frac{ax+1}{x+b}>1$的解集為(-∞,-1)∪(3,+∞),
即不等式$\frac{(a-1)x+(1-b)}{x+b}>0$的解集為(-∞,-1)∪(3,+∞),
則a-1>0,{-b,$\frac{b-1}{a-1}$}={-1,3},
即a=5,b=-3,
故不等式x2+bx-2a<0可化為:x2-3x-10<0,
解得:x∈(-2,5),
故選:A

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是二次函數(shù)的圖象和性質(zhì),分式不等式和二次不等式的解法,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知拋物線C:y2=8x的焦點(diǎn)為F,P為C的準(zhǔn)線上一點(diǎn),Q(在第一象限)是直線PF與C的一個(gè)交點(diǎn),若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,則QF的長(zhǎng)為( 。
A.$6-4\sqrt{2}$B.$8-4\sqrt{2}$C.$8+4\sqrt{2}$D.$8±4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.設(shè)函數(shù)f(x)=g($\frac{x}{2}$)+x2,曲線y=g(x)在點(diǎn)(1,g(1))處的切線方程為9x+y-1=0,則曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程為x+2y+6=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)f(x)=Asin(ωx+φ),(A>0,ω>0,0<φ<π)的圖象如圖所示,則f($\frac{π}{4}$)的值為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.若A(6,-1,4),B(1,-2,1),C(4,2,3),則△ABC的形狀是( 。
A.不等邊銳角三角形B.直角三角形
C.鈍角三角形D.等邊三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a,b,c,且A、B、C成等差數(shù)列
(1)若$b=\sqrt{7},c=2$,求△ABC的面積
(2)若sinA、sinB、sinC成等比數(shù)列,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.曲線f(x)=$\frac{lnx}{x}$在x=e處的切線方程為(  )
A.y=eB.y=x-e+$\frac{1}{e}$C.y=xD.y=$\frac{1}{e}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x}+1,x<0}\\{|\frac{1}{2}{x}^{2}-2x+1|,x≥0}\end{array}\right.$,方程f2(x)-af(x)+b=0(b≠0)有六個(gè)不同的實(shí)數(shù)解,則3a+b的取值范圍是( 。
A.[6,11]B.[3,11]C.(6,11)D.(3,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知y=$\frac{1}{3}{x^3}+b{x^2}$+(b+2)x+3是R上的單調(diào)函數(shù),則b的取值范圍是( 。
A.-1≤b≤2B.b≤-1或b≥2C.-1<b<2D.b<-1或b>2

查看答案和解析>>

同步練習(xí)冊(cè)答案