2.已知拋物線C:y2=8x的焦點為F,P為C的準線上一點,Q(在第一象限)是直線PF與C的一個交點,若$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,則QF的長為(  )
A.$6-4\sqrt{2}$B.$8-4\sqrt{2}$C.$8+4\sqrt{2}$D.$8±4\sqrt{2}$

分析 利用拋物線的定義,結(jié)合$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,Q(在第一象限)是直線PF與C的一個交點,求出直線的斜率,即可求出直線PF的方程.與y2=8x聯(lián)立可得x,利用|QF|=d可求.

解答 解:拋物線y2=8x的焦點F(2,0),設Q到準線l的距離為d,則|QF|=d
∵$\overrightarrow{PQ}=\sqrt{2}\overrightarrow{QF}$,
∴|$\overrightarrow{PQ}$|=$\sqrt{2}$d,
∵Q(在第一象限)是直線PF與C的一個交點,
∴直線的斜率為1,
∴直線的方程為x-y-2=0.
與y2=8x聯(lián)立可得x=6+4$\sqrt{2}$(另一根舍去),
∴|QF|=d=8+4$\sqrt{2}$,
故選:C.

點評 本題考查拋物線的簡單性質(zhì),考查直線與拋物線的位置關系,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

12.定義在R上的偶函數(shù)f(x)的導函數(shù)為f'(x),若對任意的實數(shù)x,都有2f(x)+xf'(x)<2恒成立,則使x2f(x)-4f(2)<x2-4成立的實數(shù)x的取值范圍是( 。
A.(-∞,-2)∪(2,+∞)B.(-2,0)∪(0,2)C.{x|x≠±2}D.(-2,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{\begin{array}{l}{3^{|x-1|}},x>0\\-{x^2}-2x+1,x≤0\end{array}\right.$,若關于x的方程f2(x)+(a-1)f(x)-a=0有7個不等的實數(shù)根,則實數(shù)a的取值范圍是( 。
A.[1,2]B.(1,2)C.(-2,-1)D.[-2,-1]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

10.設a=${∫}_{0}^{2}$(2x+1)dx,則二項式(x-$\frac{a}{2x}$)6展開式中x2項的系數(shù)為135(用數(shù)字作答).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知雙曲線$\frac{x^2}{m}-{y^2}=1$的一個頂點坐標為(2,0),則此雙曲線的漸近線方程為(  )
A.$y=±\frac{{\sqrt{2}}}{2}x$B.$y=±\sqrt{2}x$C.y=±2xD.$y=±\frac{1}{2}x$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.在△ABC中,內(nèi)角A,B,C的對邊分別為a,b,c,若bsinB-asinC=0
(1)求證:a,b,c成等比數(shù)列;
(2)若a=1,c=2,求△ABC的面積S.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.已知集合A={-2,0,2},B={x|2x2-2x-3≤1},則A∩B=( 。
A.{0}B.{2}C.{0,2}D.{-2,0}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.已知集合A={x|2x2+x-3=0},集合B={i|i2≥4}},∁RC={-1,1,$\frac{3}{2}$},則A∩BU∁RC=( 。
A.{1,-1,$\frac{3}{2}$}B.{-2,1,-$\frac{3}{2}$,-1}C.{1}D.{2,1,-1,$\frac{3}{2}$}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.不等式$\frac{ax+1}{x+b}>1$的解集為(-∞,-1)∪(3,+∞),則不等式x2+bx-2a<0的解集為( 。
A.(-2,5)B.(-0.5,0.2)C.(-2,1)D.(-0.5,1)

查看答案和解析>>

同步練習冊答案