13.甲、乙兩位同學(xué)參加數(shù)學(xué)競(jìng)賽培訓(xùn),培訓(xùn)期間共參加了10次模擬考試,根據(jù)考試成績(jī),得到如下圖所示的莖葉圖.規(guī)定模擬考試成績(jī)不低于81分為優(yōu)秀等次.
(1)求乙學(xué)生的平均成績(jī)及方差;
(2)從甲學(xué)生的10次模擬考試成績(jī)中隨機(jī)選取3個(gè),記成績(jī)?yōu)閮?yōu)秀等次的個(gè)數(shù)為X,求X的分布列和數(shù)學(xué)期望.

分析 (1)由莖葉圖能求出乙學(xué)生的平均成績(jī)和方差.
(2)X的可能取值為0,1,2,3,分別求出相應(yīng)的概率,由此能求出X的分布列和EX.

解答 解:(1)由莖葉圖得乙學(xué)生的平均成績(jī)?yōu)椋?br />$\overline{x}$=$\frac{1}{10}$(61+69+74+75+78+89+86+89+94)=80,
方差為:
S2=$\frac{1}{10}$[(-19)2+(-11)2+(-6)2+(-5)2+(-2)2+92+62+52+92+142]=96.6.
(2)X的可能取值為:
P(X=0)=$\frac{{C}_{5}^{0}{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
P(X=1)=$\frac{{C}_{5}^{1}{C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=2)=$\frac{{C}_{5}^{1}{C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(X=3)=$\frac{{C}_{5}^{0}{C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
∴X的分布列為:

 X 0 1 2 3
 P $\frac{1}{12}$ $\frac{5}{12}$ $\frac{5}{12}$ $\frac{1}{12}$
EX=$0×\frac{1}{12}+1×\frac{5}{12}+2×\frac{5}{12}+3×\frac{1}{12}$=1.5.

點(diǎn)評(píng) 本題考查概率的求法,考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,涉及到平均數(shù)、方差、離散型隨機(jī)變量的分布列及數(shù)學(xué)期望等知識(shí)點(diǎn),考查推理論證能力、運(yùn)算求解能力、數(shù)據(jù)處理能力,考查化歸與轉(zhuǎn)化思想,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若采用系統(tǒng)抽樣方法從420人中抽取21人做問(wèn)卷調(diào)查,為此將他們隨機(jī)編號(hào)為1,2,…,420,抽取的人的編號(hào)在區(qū)間[241,360]內(nèi)的人數(shù)是(  )
A.7B.6C.5D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在《我是歌手》的比賽中,有6位歌手(1~6號(hào))進(jìn)入決賽,在決賽中由現(xiàn)場(chǎng)的百家媒體投票選出最受歡迎的歌手,各家媒體獨(dú)立地在投票器上選出3位候選人,其中媒體甲是1號(hào)歌手的歌迷,他必選1號(hào),另在2號(hào)至6號(hào)中隨機(jī)的選2名;媒體乙不欣賞2號(hào)歌手,他一定不選2號(hào),;媒體丙對(duì)6位歌手的演唱沒(méi)有偏愛(ài),因此在1至6號(hào)歌手中隨機(jī)的選出3名.
(1)求媒體甲選中5號(hào)且媒體乙未選中5號(hào)歌手的概率;
(2)ξ表示5號(hào)歌手得到媒體甲,乙,丙的票數(shù)之和,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.已知函數(shù)f(x)=sin$\frac{π}{2}$x-1(x<0),g(x)=logax(a>0,且a≠1).若它們的圖象上存在關(guān)于y軸對(duì)稱的點(diǎn)至少有3對(duì),則實(shí)數(shù)a的取值范圍是(  )
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.(-∞,-1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=ex-ax+a(a∈R),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2,證明:x1+x2<2lna.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.設(shè)拋物線E:y2=4x的焦點(diǎn)為F,準(zhǔn)線為l,過(guò)拋物線上一點(diǎn)P作l的垂線,垂足為A,設(shè)B(7,0),PF與AB交于點(diǎn)C,若△PBC的面積為2$\sqrt{2}$,則|PC|:|CF|=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-2;數(shù)列{bn}的前n項(xiàng)和為Tn,且滿足b1=1,b2=2,$\frac{T_n}{{{T_{n+1}}}}=\frac{b_n}{{{b_{n+2}}}}$.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得$\frac{{{a_n}+{b_n}+1}}{{{a_n}-{b_{n+1}}}}$恰為數(shù)列{bn}中的一項(xiàng)?若存在,求所有滿足要求的bn;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.等差數(shù)列{an}的公差d<0,且a${\;}_{1}^{2}$=a${\;}_{17}^{2}$,則數(shù)列{an}的前n項(xiàng)和Sn取得最大時(shí)的項(xiàng)數(shù)n是( 。
A.8或9B.9或10C.10或11D.11或12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知函數(shù)f(x)=$\frac{1}{3}$x3-$\frac{1}{2}$ax2,a∈R,
(1)當(dāng)a=2時(shí),求曲線y=f(x)在點(diǎn)(3,f(3))處的切線方程;
(2)設(shè)函數(shù)g(x)=f(x)+(x-a)cosx-sinx,討論g(x)的單調(diào)性并判斷有無(wú)極值,有極值時(shí)求出極值.

查看答案和解析>>

同步練習(xí)冊(cè)答案