12.已知直線a,b以及平面α,β,則下列命題正確的是( 。
A.若a∥α,b∥α,則a∥bB.若a∥α,b⊥α,則 a⊥b
C.若a∥b,b∥α,則a∥αD.若a⊥α,b∥β,則 α⊥β

分析 對4個(gè)命題分別進(jìn)行判斷,即可得出結(jié)論.

解答 解:對于A,若a∥α,b∥α,則a∥b或a,b相交、異面,不正確;
對于B,若a∥α,則經(jīng)過a的平面與α交于c,a∥c,∵b⊥α,∴b⊥c,∵a∥c,∴a⊥b,正確;
對于C,若a∥b,b∥α,則a∥α或a?α,不正確;
對于D,若a⊥α,b∥β,則α、β位置關(guān)系不確定,不正確,
故選B.

點(diǎn)評 本題考查了空間線面、面面位置關(guān)系、簡易邏輯的判定方法,考查了推理能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.在△ABC中,AB=BC=3,∠BAC=30°,CD是AB邊上的高,則$\overrightarrow{CD}•\overrightarrow{CB}$=( 。
A.$-\frac{9}{4}$B.$\frac{9}{4}$C.$\frac{27}{4}$D.$-\frac{27}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.下列說法正確的是(  )
A.若x,y∈R,且$\left\{\begin{array}{l}{x+y>4}\\{xy>4}\end{array}\right.$,則$\left\{\begin{array}{l}{x>2}\\{y>2}\end{array}\right.$
B.設(shè)命題p:?x>0,x2>2x,則¬p:?x0≤0,x02≤2${\;}^{{x}_{0}}$
C.△ABC中,A>B是sinA>sinB的充分必要條件
D.命題“若a=-1,則f(x)=ax2+2x-1只有一個(gè)零點(diǎn)”的逆命題為真

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知點(diǎn)F1,F(xiàn)2分別是橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的焦點(diǎn),點(diǎn)B是短軸頂點(diǎn),直線BF2與橢圓C相交于另一點(diǎn)D.若△F1BD是等腰三角形,則橢圓C的離心率為( 。
A.$\frac{1}{3}$B.$\frac{{\sqrt{3}}}{3}$C.$\frac{{\sqrt{2}}}{2}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在三棱柱ABC-A1B1C1中,側(cè)棱垂直于底面,AB⊥BC,AA1=AC=2,BC=1,E,F(xiàn)分別為A1C1,BC的中點(diǎn).
(I)求證:平面ABE⊥平面B1BCC1
(II)求證:C1F∥平面ABE
(III)求直線CE和平面ABE所成角的正弦.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列說法正確的個(gè)數(shù)是( 。
(1)若p∧q為假命題,則p,q均為假命題
(2)已知直線α,β,平面α,β,且a⊥α,b?β,則“a⊥b”是“α∥β”的必要不充分條件
(3)命題“若a≥b,則a2≥b2”的逆否命題為“若a2≤b2,則a≤b”
(4)命題“?x0∈(0,+∞),使lnx0=x0-2”的否定是“?x∈(0,+∞),lnx≠x-2”
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知$\overrightarrow{a}$,$\overrightarrow$是兩個(gè)向量,|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,且($\overrightarrow{a}$+$\overrightarrow$)⊥$\overrightarrow{a}$,若在△ABC中,$\overrightarrow{AB}$=$\overrightarrow{a}$,$\overrightarrow{AC}$=$\overrightarrow$,D為BC中點(diǎn),則AD的長為( 。
A.$\frac{{\sqrt{7}}}{2}$B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{5}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知點(diǎn)P是函數(shù)y=x-2lnx圖象上一點(diǎn),點(diǎn)Q是直線x+y+1=0上的動點(diǎn),則PQ的最小值為$\frac{3\sqrt{2}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.拋物線y=$\frac{1}{4}$x2的準(zhǔn)線方程是( 。
A.y=-1B.y=1C.x=-$\frac{1}{16}$D.x=$\frac{1}{16}$

查看答案和解析>>

同步練習(xí)冊答案