【題目】在銳角三角形中,若,則的取值范圍是__________.
【答案】
【解析】由sinA=sin(π﹣A)=sin(B+C)=sinBcosC+cosBsinC,sinA=2sinBsinC,
可得sinBcosC+cosBsinC=2sinBsinC,①
由三角形ABC為銳角三角形,則cosB>0,cosC>0,
在①式兩側(cè)同時除以cosBcosC可得tanB+tanC=2tanBtanC,
又tanA=﹣tan(π﹣A)=﹣tan(B+C)=②,
則tanAtanBtanC=﹣tanBtanC,
由tanB+tanC=2tanBtanC可得tanAtanBtanC =,
令tanBtanC=t,由A,B,C為銳角可得tanA>0,tanB>0,tanC>0,
由②式得1﹣tanBtanC<0,解得t>1,
tanAtanBtanC ,
由t>1得,﹣≤<0,
因此tanAtanBtanC的最小值為8,
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=
(1)當(dāng)x≤0時,解不等式f(x)≥﹣1;
(2)寫出該函數(shù)的單調(diào)區(qū)間;
(3)若函數(shù)g(x)=f(x)﹣m恰有3個不同零點,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:關(guān)于x的不等式x2+2ax+4>0對一切 恒成立;q:函數(shù)f(x)=-(5-2a)x在R上是減函數(shù).若“p或q”為真,“p且q”為假,求實數(shù)a的取值范圍( )。
A.
B.B、
C.C、
D.a≥-2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)關(guān)于x的方程2x2﹣ax﹣2=0的兩根分別為α、β(α<β),函數(shù)
(1)證明f(x)在區(qū)間(α,β)上是增函數(shù);
(2)當(dāng)a為何值時,f(x)在區(qū)間[α,β]上的最大值與最小值之差最小.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知下列三個命題:
①若一個球的半徑縮小到原來的 ,則其體積縮小到原來的 ;
②若兩組數(shù)據(jù)的平均數(shù)相等,則它們的標準差也相等;
③直線x+y+1=0與圓x2+y2= 相切.
其中真命題的序號是( )
A.①②③
B.①②
C.①③
D.②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù),在矩形ABCD中, , ,O為AB的中點,點E、F、G分別在BC、CD、DA上移動,且,P為GE與OF的交點(如圖),問是否存在兩個定點,使P到這兩點的距離的和為定值?若存在,求出這兩點的坐標及此定值;若不存在,請說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com