分析 根據(jù)函數(shù)圖象可得周期T、振幅A,利用周期公式求出ω,
利用解析式及φ的范圍求出φ的值,即可確定函數(shù)解析式.
解答 解:∵根據(jù)圖象判斷,周期為
T=4×($\frac{5}{6}$-$\frac{1}{3}$)=2,A=2,
∴$\frac{2π}{ω}$=2,解得:ω=π;
又2sin(π×$\frac{1}{3}$+φ)=2,
∴$\frac{π}{3}$+φ=2kπ+$\frac{π}{2}$,k∈z,
∴φ=2kπ+$\frac{π}{6}$,k∈z;
又|φ|<$\frac{π}{2}$,
∴φ=$\frac{π}{6}$;
∴f(x)的解析式為f(x)=2sin(πx+$\frac{π}{6}$),x∈R.
故答案為:f(x)=2sin(πx+$\frac{π}{6}$),x∈R.
點評 本題考查了由y=Asin(ωx+φ)的部分圖象確定其解析式的應(yīng)用問題,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | y=±$\sqrt{3}$x | B. | y=±4x | C. | y=±$\sqrt{2}$x | D. | y=±2x |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{\sqrt{1-{k^2}}}}{k}$ | B. | $-\frac{{\sqrt{1-{k^2}}}}{k}$ | C. | $\frac{k}{{\sqrt{1-{k^2}}}}$ | D. | $-\frac{k}{{\sqrt{1-{k^2}}}}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{5}{3}$ | C. | $\frac{\sqrt{41}}{5}$ | D. | $\frac{5}{\sqrt{41}}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com