14.等差數(shù)列{an}的前n項和為Sn,若a1=1,S2=a3,且a1,a2,ak成等比數(shù)列,則k=( 。
A.1B.2C.3D.4

分析 設(shè)出等差數(shù)列的公差,由已知列式求得公差,再由a1,a2,ak成等比數(shù)列求得答案.

解答 解:設(shè)等差數(shù)列{an}的公差為d,則由a1=1,S2=a3
得a1+a1+d=a1+2d,即d+2=2d+1,得d=1.
∴a2=2,又a1,a2,ak成等比數(shù)列,
∴${{a}_{2}}^{2}={a}_{1}{a}_{k}$,即${a}_{k}=\frac{{{a}_{2}}^{2}}{{a}_{1}}=\frac{4}{1}=4$.
∴ak=4=1+(k-1)×1,解得k=4.
故選:D.

點評 本題是等差數(shù)列與等比數(shù)列的綜合題,考查了等差數(shù)列的通項公式和等比數(shù)列的性質(zhì),是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知點P在以F1、F2為焦點的雙曲線上,且$\overrightarrow{P{F_2}}•\overrightarrow{{F_1}{F_2}}=0,∠P{F_1}{F_2}={30°}$,則雙曲線的離心率( 。
A.$1+\sqrt{2}$B.$\frac{{\sqrt{3}}}{3}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知集合A={y|y=x2+2x+1,x∈[-2,3]},集合B={x|x-m>0}.A∩B=A,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.拋物線y=$\frac{1}{8}{x^2}$的準線方程是( 。
A.x=-2B.x=-4C.y=-2D.y=-4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.(文)已知橢圓$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1(a>b>0),F(xiàn)1,F(xiàn)2是它的左右焦點,過F1的直線AB與橢圓交于AB兩點,則△ABF2的周長為(  )
A.8B.10C.32D.16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知等比數(shù)列{an}滿足a7=$\frac{1}{4}$,a3a5=4(a4-1),則a2=(  )
A.2B.1C.8D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.等差數(shù)列{an}中,S9=18,a2=8,
(1)求數(shù)列的通項公式.
(2)前n項和為Sn的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.曲線y=lnx在點x=3處的切線的斜率為( 。
A.e3B.$\frac{1}{{e}^{3}}$C.$\frac{1}{3}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x^3}-2ax+1,x≥2\\{(a-1)^x}-7,x<2\end{array}$是R上的增函數(shù),則a的取值范圍為( 。
A.(2,3]B.(2,3)C.[2,3]D.(2,6]

查看答案和解析>>

同步練習(xí)冊答案