【題目】在極坐標(biāo)系中,射線與圓交于點,橢圓的方程為,以極點為原點,極軸為軸正半軸建立平面直角坐標(biāo)系
(1)求點的直角坐標(biāo)和橢圓的參數(shù)方程;
(2)若為橢圓的下頂點,為橢圓上任意一點,求的取值范圍
【答案】(1),(為參數(shù)).(2)
【解析】
(1)由題意,可得點A的極坐標(biāo)為,進(jìn)而得到點A的直角坐標(biāo), 又由極坐標(biāo)與直角坐標(biāo)的互化公式,求得曲線的直角坐標(biāo)方程,進(jìn)而得到其對應(yīng)的參數(shù)方程;
(2)設(shè),結(jié)合向量的數(shù)量積的運算公式和三角函數(shù)的性質(zhì),即可求解.
(1)由題意,射線與圓交于點,可得點A的極坐標(biāo)為,
所以對應(yīng)的直角坐標(biāo)為,
又由得,
因為,,所以,
橢圓的直角坐標(biāo)方程為,所以對應(yīng)的參數(shù)方程為(為參數(shù)).
(2)設(shè),
又,所以,,span>
于是,
因為,所以,
所以的取值范圍為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若數(shù)列{an}滿足:對任意n∈N*,均有an=bn+cn成立,且{bn},{cn}都是等比數(shù)列,則稱(bn,cn)是數(shù)列{an}的一個等比拆分.
(1)若an=2n,且(bn,bn+1)是數(shù)列{an}的一個等比拆分,求{bn}的通項公式;
(2)設(shè)(bn,cn)是數(shù)列{an}的一個等比拆分,且記{bn},{cn}的公比分別為q1,q2;
①若{an}是公比為q的等比數(shù)列,求證:q1=q2=q;
②若a1=1,a2=2,q1q2=﹣1,且對任意n∈N*,an+13<anan+1an+2+an+2﹣an恒成立,求a3的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知等比數(shù)列{an}的前n項和為Sn,且a1+a3=30,2S2是3S1和S3的等差中項.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)設(shè)數(shù)列{bn}滿足,求數(shù)列{bn}前n項和Tn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】楊輝,字謙光,南宋時期杭州人.在他1261年所著的《詳解九章算法》一書中,輯錄了如圖所示的三角形數(shù)表,稱之為“開方作法本源”圖,并說明此表引自11世紀(jì)中葉(約公元1050年)賈憲的《釋鎖算術(shù)》,并繪畫了“古法七乘方圖”.故此,楊輝三角又被稱為“賈憲三角”.楊輝三角是一個由數(shù)字排列成的三角形數(shù)表,一般形式如下:
基于上述規(guī)律,可以推測,當(dāng)時,從左往右第22個數(shù)為_____________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中曲線的參數(shù)方程為(為參數(shù)),以為極點,軸的正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求曲線的普通方程以及直線的直角坐標(biāo)方程;
(2)將曲線向左平移2個單位,再將曲線上的所有點的橫坐標(biāo)縮短為原來的,得到曲線,求曲線上的點到直線的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓過點,且離心率為.直線與軸正半軸和軸分別交于點、,與橢圓分別交于點、,各點均不重合且滿足 ,.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若,試證明:直線過定點并求此定點.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知,是函數(shù)(其中常數(shù))圖象上的兩個動點,點,若的最小值為0,則函數(shù)的最大值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市為了解本市萬名學(xué)生的漢字書寫水平,在全市范圍內(nèi)進(jìn)行了漢字聽寫考試,發(fā)現(xiàn)其成績服從正態(tài)分布,現(xiàn)從某校隨機抽取了名學(xué)生,將所得成績整理后,繪制出如圖所示的頻率分布直方圖.
(1)估算該校名學(xué)生成績的平均值(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表);
(2)求這名學(xué)生成績在內(nèi)的人數(shù);
(3)現(xiàn)從該校名考生成績在的學(xué)生中隨機抽取兩人,該兩人成績排名(從高到低)在全市前名的人數(shù)記為,求的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù):若,則,
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com