5.在平行四邊形ABCD中,AB=3,AD=2,$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AQ}$=$\frac{1}{2}$$\overrightarrow{AD}$,若$\overrightarrow{CP}$•$\overrightarrow{CQ}$=12,則∠BAD=( 。
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{2}$D.$\frac{2π}{3}$

分析 根據(jù)平行四邊形的性質(zhì),利用平面向量的線性表示與數(shù)量積運算,即可求出答案.

解答 解:如圖所示,
平行四邊形ABCD中,AB=3,AD=2,
$\overrightarrow{AP}$=$\frac{1}{3}$$\overrightarrow{AB}$,$\overrightarrow{AQ}$=$\frac{1}{2}$$\overrightarrow{AD}$,
∴$\overrightarrow{CP}$=$\overrightarrow{CB}$+$\overrightarrow{BP}$=-$\overrightarrow{AD}$-$\frac{2}{3}$$\overrightarrow{AB}$,
$\overrightarrow{CQ}$=$\overrightarrow{CD}$+$\overrightarrow{DQ}$=-$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AD}$
若$\overrightarrow{CP}$•$\overrightarrow{CQ}$=12,
則$\overrightarrow{CP}$•$\overrightarrow{CQ}$=(-$\overrightarrow{AD}$-$\frac{2}{3}$$\overrightarrow{AB}$)•(-$\overrightarrow{AB}$-$\frac{1}{2}$$\overrightarrow{AD}$)
=$\frac{2}{3}$${\overrightarrow{AB}}^{2}$+$\frac{1}{2}$${\overrightarrow{AD}}^{2}$+$\frac{4}{3}$$\overrightarrow{AB}$•$\overrightarrow{AD}$
=$\frac{2}{3}$×32+$\frac{1}{2}$×22+$\frac{4}{3}$×3×2×cos∠BAD=12,
cos∠BAD=$\frac{1}{2}$,
∴∠BAD=$\frac{π}{3}$.
故選:B.

點評 本題考查了平行四邊形的性質(zhì)與平面向量的數(shù)量積運算問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知f(x)是定義在R上的函數(shù),f'(x)是f(x)的導(dǎo)函數(shù).給出如下四個結(jié)論:
①若$f'(x)+\frac{f(x)}{x}>0$,且f(0)=e,則函數(shù)xf(x)有極小值0;
②若xf'(x)+2f(x)>0,則4f(2n+1)<f(2n),n∈N*;
③若f'(x)-f(x)>0,則f(2017)>ef(2016);
④若f'(x)+f(x)>0,且f(0)=1,則不等式f(x)<e-x的解集為(0,+∞).
所有正確結(jié)論的序號是①③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.一個圓經(jīng)過橢圓$\frac{{x}^{2}}{4}$+y2=1的三個頂點,且圓心在x軸的正半軸上,則該圓的標(biāo)準(zhǔn)方程為(  )
A.(x-$\frac{3}{2}$)2+y2=$\frac{25}{4}$B.(x+$\frac{3}{4}$)2+y2=$\frac{25}{16}$C.(x-$\frac{3}{4}$)2+y2=$\frac{25}{16}$D.(x-$\frac{3}{4}$)2+y2=$\frac{25}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知函數(shù)$f(x)=\left\{{\begin{array}{l}{x+1,(x≤1)}\\{-x+1,(x>1)}\end{array}}\right.$,則f[f(2)]=( 。
A.3B.2C.1D.0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線為$y=\sqrt{5}x$,則雙曲線的離心率為( 。
A.$\frac{\sqrt{6}}{6}$B.2C.$\sqrt{5}$D.$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.?x0∈(2,+∞),k(x0-2)>x0(lnx0+1),則正整數(shù)k的最小值為5.
(參考數(shù)據(jù):ln2≈0.6931,ln3≈1.0986,ln5≈1.6094)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.如圖,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的正視圖(等腰直角三角形)和側(cè)視圖,且該幾何體的體積為$\frac{8}{3}$,則該幾何體的俯視圖可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知tanθ=2,且θ∈$({0,\frac{π}{2}})$,則cos2θ=(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$-\frac{3}{5}$D.$-\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)$y=\sqrt{x}-1$的值域是( 。
A.[0,+∞)B.(0,+∞)C.[-1,+∞)D.(-1,+∞)

查看答案和解析>>

同步練習(xí)冊答案