【題目】設(shè)函數(shù), , .
(1)討論的單調(diào)性;
(2)當(dāng)時(shí),函數(shù)的圖像上存在點(diǎn)在函數(shù)的圖像的下方,求的取值范圍.
【答案】(1)①當(dāng)時(shí), 在在上單調(diào)遞增, 上單調(diào)遞減;②當(dāng)時(shí), 在, 上單調(diào)遞增;在上單調(diào)遞減;③當(dāng)時(shí), 在上單調(diào)遞增;④當(dāng)時(shí), 在, 上單調(diào)遞增,在上單調(diào)遞減;(2).
【解析】試題分析:(1)對(duì)函數(shù)求導(dǎo),對(duì)進(jìn)行分類討論,結(jié)合導(dǎo)數(shù)的正負(fù)即可確定函數(shù)的單調(diào)性;(2)由函數(shù)的圖像上存在點(diǎn)在函數(shù)的圖像的下方,可推出,使得成立,即, 有解,設(shè),求出函數(shù)的單調(diào)性與最小值,從而可得的取值范圍.
試題解析:(1) ,
①當(dāng)時(shí), 在在上單調(diào)遞增, 上單調(diào)遞減;
②當(dāng)時(shí), 在, 上單調(diào)遞增;在上單調(diào)遞減;
③當(dāng)時(shí), 在上單調(diào)遞增;
④當(dāng)時(shí), 在, 上單調(diào)遞增,在上單調(diào)遞減;
(2)∵函數(shù)的圖像上存在點(diǎn)在函數(shù)的圖像的下方,可知,使得成立, ,即, 有解, 設(shè), ,
令,則當(dāng)時(shí), ,所以在上遞增,
,
存在唯一的零點(diǎn),且當(dāng)時(shí), ,
當(dāng)時(shí), ,則當(dāng)時(shí), , 單調(diào)遞減,
當(dāng)時(shí), , 單調(diào)遞增,
故,
由,可得, ,
,
,即實(shí)數(shù)的取值范圍是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在楊輝三角形中,從第2行開(kāi)始,除1以外,其它每一個(gè)數(shù)值是它上面的兩個(gè)數(shù)值之和,該三角形數(shù)陣開(kāi)頭幾行如圖所示.
(1)在楊輝三角形中是否存在某一行,使該行中三個(gè)相鄰的數(shù)之比是3∶4∶5?若存在,試求出是第幾行;若不存在,請(qǐng)說(shuō)明理由;
(2)已知n,r為正整數(shù),且n≥r+3.求證:任何四個(gè)相鄰的組合數(shù)C,C,C,C不能構(gòu)成等差數(shù)列.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P(2,0),且圓C:x2+y2﹣6x+4y+4=0.
(Ⅰ)當(dāng)直線過(guò)點(diǎn)P且與圓心C的距離為1時(shí),求直線的方程;
(Ⅱ)設(shè)過(guò)點(diǎn)P的直線與圓C交于A、B兩點(diǎn),若|AB|=4,求以線段AB為直徑的圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】合肥一中、六中為了加強(qiáng)交流,增進(jìn)友誼,兩校準(zhǔn)備舉行一場(chǎng)足球賽,由合肥一中版畫(huà)社的同學(xué)設(shè)計(jì)一幅矩形宣傳畫(huà),要求畫(huà)面面積為,畫(huà)面的上、下各留空白,左、右各留空白.
(1)如何設(shè)計(jì)畫(huà)面的高與寬的尺寸,才能使宣傳畫(huà)所用紙張面積最小?
(2)設(shè)畫(huà)面的高與寬的比為,且,求為何值時(shí),宣傳畫(huà)所用紙張面積最小?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法中正確的是( )
A. “”是“”成立的充分不必要條件
B. 命題,則
C. 為了了解800名學(xué)生對(duì)學(xué)校某項(xiàng)教改試驗(yàn)的意見(jiàn),用系統(tǒng)抽樣的方法從中抽取一個(gè)容量為40的樣本,則分組的組距為40
D. 已知回歸直線的斜率的估計(jì)值為1.23,樣本點(diǎn)的中心為,則回歸直線方程為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】劉徽是我國(guó)魏晉時(shí)期著名的數(shù)學(xué)家,他編著的《海島算經(jīng)》中有一問(wèn)題:“今有望海島,立兩表齊,高三丈,前后相去千步,令后表與前表相直。從前表卻行一百二十三步,人目著地取望島峰,與表末參合。從后表卻行百二十七步,人目著地取望島峰,亦與表末參合。問(wèn)島高幾何?” 意思是:為了測(cè)量海島高度,立了兩根表,高均為5步,前后相距1000步,令后表與前表在同一直線上,從前表退行123步,人恰觀測(cè)到島峰,從后表退行127步,也恰觀測(cè)到島峰,則島峰的高度為( )(注:3丈=5步,1里=300步)
A. 4里55步 B. 3里125步 C. 7里125步 D. 6里55步
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知下列命題:
①回歸直線恒過(guò)樣本點(diǎn)的中心,且至少過(guò)一個(gè)樣本點(diǎn);
②兩個(gè)變量相關(guān)性越強(qiáng),則相關(guān)系數(shù)就越接近于;
③對(duì)分類變量與,的觀測(cè)值越小,“與有關(guān)系”的把握程度越大;
④兩個(gè)模型中殘差平方和越小的模型擬合的效果越好.則正確命題的個(gè)數(shù)為( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某研究性學(xué)習(xí)小組對(duì)晝夜溫差大小與某種子發(fā)芽多少之間的關(guān)系進(jìn)行研究,下面是3月1日至5日每天晝夜溫差與實(shí)驗(yàn)室每天每100顆種子浸泡后的發(fā)芽數(shù)的詳細(xì)記錄:
(1)根據(jù)3月2日至3月4日的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
日期 | 3月1日 | 3月2日 | 3月3日 | 3月4日 | 3月5日 |
溫差 | 10 | 11 | 13 | 12 | 8 |
發(fā)芽數(shù)顆 | 23 | 25 | 30 | 26 | 16 |
(2)若由線性回歸方程得到的估計(jì)數(shù)據(jù)與所選出的檢驗(yàn)數(shù)據(jù)的誤差均小于2顆,則認(rèn)為得到的線性回歸方程是可靠的,試問(wèn)(1)中所得的線性回歸方程是否可靠?
參考公式:,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】平面直角坐標(biāo)系中,是過(guò)定點(diǎn)且傾斜角為的直線,在極坐標(biāo)系(以坐標(biāo)原點(diǎn)為極點(diǎn),以軸非負(fù)半軸為極軸,取相同單位長(zhǎng)度)中,曲線的極坐標(biāo)方程為 .
(1)寫(xiě)出直線的參數(shù)方程,并將曲線的方程為化直角坐標(biāo)方程;
(2)若曲線與直線相交于不同的兩點(diǎn),求的取值范圍。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com