1.設(shè)等比數(shù)列{an}滿足a1+a3=5,a2+a4=$\frac{5}{2}$,則a1a2…an的最大值為8.

分析 設(shè)等比數(shù)列{an}的公比為q,利用a1+a3=5,a2+a4=$\frac{5}{2}$,解得q=$\frac{1}{2}$,a1=4.利用單調(diào)性即可得出.

解答 解:設(shè)等比數(shù)列{an}的公比為q,∵a1+a3=5,a2+a4=$\frac{5}{2}$,
∴q(a1+a3)=5q=$\frac{5}{2}$,解得q=$\frac{1}{2}$,∴${a}_{1}(1+\frac{1}{4})$=5,解得a1=4.
∴a1=4,a2=2,a3=1,a4=$\frac{1}{2}$.
則a1a2…an的最大值為a1×a2×a3=8.
故答案為:8.

點(diǎn)評(píng) 本題考查了等比數(shù)列的通項(xiàng)公式及其單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+\frac{1}{x},x∈[-1,-\frac{1}{2})\\-\frac{5}{2},x∈[-\frac{1}{2},\frac{1}{2})\\ x-\frac{1}{x},x∈[\frac{1}{2},1)\end{array}$.
(1)求f(x)的值域;
(2)設(shè)函數(shù)g(x)=ax-3,x∈[-1,1],若對(duì)于任意x1∈[-1,1],總存在x0∈[-1,1],使得g(x0)=f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\left\{\begin{array}{l}{{2}^{x},x≤0}\\{lo{g}_{2}x,x>0}\end{array}\right.$,函數(shù)y=f[f(x)]-$\frac{1}{2}$的零點(diǎn)個(gè)數(shù)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2)+a,x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若f[f(ln2)]=2a,則f(a)等于(  )
A.$\frac{1}{2}$B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.設(shè)U=R,集合A={x|x2+3x+2=0},B={x|x2+(m+1)x+m=0};若B∩A=B,求m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在數(shù)列{an}中,a1=2,an+1=4an-3n+1,n∈N*
(Ⅰ)求a2的值,并求$\frac{{{a_{n+1}}-(n+1)}}{{{a_n}-n}}$的值;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若數(shù)列{an}的前n項(xiàng)和Sn,證明不等式Sn+1≤4Sn,對(duì)任意n∈N*皆成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)二次函數(shù)的圖象經(jīng)過點(diǎn)(2,-5),且它的頂點(diǎn)坐標(biāo)為(1,-8),求它的解析式;
(2)二次函數(shù)的圖象滿足f(0)=0,f(2)=0,f(x)=x有兩個(gè)相等的實(shí)根,求它的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知集合A={x|y=$\sqrt{{2}^{x}-1}$),B={x|x2-1>0},則A∩B=(  )
A.(-∞,-1)B.[0,1)C.(1,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=-x2+2x,x∈[-1,3],則任取一點(diǎn)x0∈[-1,3],使得f(x0)≥0的概率為( 。
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{1}{2}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案