9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2)+a,x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若f[f(ln2)]=2a,則f(a)等于( 。
A.$\frac{1}{2}$B.$\frac{4}{3}$C.2D.4

分析 利用分段函數(shù)轉(zhuǎn)化方程求解即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2)+a,x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若f[f(ln2)]=2a,
可得f(eln2-1)=f(1)=log3(1+2)+a=2a,
可得1+a=2a,
解得a=1,
f(1)=2a=2.
故選:C.

點(diǎn)評(píng) 本題考查分段函數(shù)的應(yīng)用,函數(shù)的零點(diǎn)與方程根的關(guān)系,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.在銳角三角形ABC中,A=2B,B,C的對(duì)邊分別是b、c.則$\frac{a}{b+c}$的取值范圍是($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知函數(shù)f(x)=Asin(ωx+φ),x∈R(其中A>0,ω>0,0<φ<$\frac{π}{2}$)的圖象與x軸的相鄰兩個(gè)交點(diǎn)之間的距離為$\frac{π}{2}$,且圖象上一個(gè)最高點(diǎn)為Q($\frac{π}{6}$,2)
(1)求f(x)的解析式;
(2)當(dāng)x∈[$\frac{π}{12}$,$\frac{π}{2}$],求f(x)的最小值及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.已知函數(shù)f(x)=ax3-2x的圖象過(guò)點(diǎn)(-1,4)則a=( 。
A.2B.-2C.3D.-3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知U=R,A={x|-1≤x≤2},B={x|x<a},且B⊆∁RA,則實(shí)數(shù)a的取值范圍是( 。
A.a<-1B.a≤-1C.a>2D.a≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.以下是某地搜集到的新房屋的銷售價(jià)格y和房屋的面積x的數(shù)據(jù):
房屋面積x(m211511080135105
銷售價(jià)格y(萬(wàn)元)24.821.618.429.222
(1)畫(huà)出數(shù)據(jù)對(duì)應(yīng)的散點(diǎn)圖;
(2)求線性回歸方程,并在散點(diǎn)圖中加上回歸直線.
(參考公式$\stackrel{∧}$=$\frac{\sum_{i=1}^{n}{x}_{i}{y}_{i}-n\overline{x}•\overline{y}}{\sum_{i=1}^{n}{{x}_{i}}^{2}-n{\overline{x}}^{2}}$,$\overline{y}$=$\stackrel{∧}$$\overline{x}$+$\stackrel{∧}{a}$,其中$\sum_{i=1}^{5}{{x}_{i}}^{2}$=60975,$\sum_{i=1}^{5}{x}_{i}{y}_{i}$=12952.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.設(shè)等比數(shù)列{an}滿足a1+a3=5,a2+a4=$\frac{5}{2}$,則a1a2…an的最大值為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2017屆河北滄州市高三9月聯(lián)考數(shù)學(xué)(理)試卷(解析版) 題型:選擇題

上隨機(jī)地取兩個(gè)實(shí)數(shù)

,則事件“直線

與圓

相交”發(fā)生的概率為

A.

B.

C.

D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知二次函數(shù)f(x)的圖象的頂點(diǎn)為A(1,16),且函數(shù)f(x)的圖象在x軸上截得的線段長(zhǎng)為8.
(1)求函數(shù)f(x)的解析式;
(2)若函數(shù)g(x)=(2-2p)x-f(x)在x∈[0,2]上是單調(diào)增函數(shù),求實(shí)數(shù)p的取值范圍;
(3)若函數(shù)h(x)=-2af(x)+(4a+2)x+29a-1在區(qū)間[-1,1]上有且只有一個(gè)零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案