20.在銳角三角形ABC中,A=2B,B,C的對(duì)邊分別是b、c.則$\frac{a}{b+c}$的取值范圍是($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$).

分析 由A=2B可得C=180°-3B,由A,B,C∈(0°,90°)可先確定B的范圍,利用正弦定理化簡(jiǎn)表達(dá)式,求出范圍即可.

解答 解:在銳角△ABC中,
∵A=2B,
∴C=180°-3B,
∴$\left\{\begin{array}{l}{\stackrel{0°<B<90°}{0°<2B<90°}}\\{0°<180°-3B<90°}\end{array}\right.$,
∴∠B∈(30°,45°),cosB∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),
由正弦定理可知:$\frac{a}{b+c}$=$\frac{sin2B}{sinB+sin3B}$=$\frac{sin2B}{2sin2BcosB}$=$\frac{1}{2cosB}$∈($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$).
故答案為:($\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$).

點(diǎn)評(píng) 本題主要考查正弦定理在解三角形中的應(yīng)用,注意銳角三角形中角的范圍的確定,是本題解答的關(guān)鍵,考查計(jì)算能力,邏輯推理能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.如圖,三個(gè)邊長(zhǎng)為1的等邊三角形有一條邊在同一條直線上,邊GD上有2016個(gè)不同的點(diǎn)P1、P2、P3、…、P2016,則$\overrightarrow{AF}•({{{\overrightarrow{AP}}_1}+{{\overrightarrow{AP}}_2}+{{\overrightarrow{AP}}_3}+…+{{\overrightarrow{AP}}_{2016}}})$=9072.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知$\overrightarrow a=(1,0){,_{\;}}\overrightarrow b=(2,1)$,且向量$k\overrightarrow a-\overrightarrow b$與$\overrightarrow a+3\overrightarrow b$平行,則k=(  )
A.$-\frac{1}{3}$B.$\frac{1}{3}$C.$\frac{13}{3}$D.$\frac{17}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.若函數(shù)y=sin(2x+$\frac{π}{3}$)的圖象上所有的點(diǎn)的橫坐標(biāo)擴(kuò)大到原來(lái)的2倍,縱坐標(biāo)不變,則得到的圖象所對(duì)應(yīng)的函數(shù)解析式為( 。
A.y=sin(x+$\frac{π}{6}$)B.y=sin(x+$\frac{π}{3}$)C.y=sin(4x+$\frac{2π}{3}$)D.y=sin(4x+$\frac{π}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

15.計(jì)算:[$\frac{(0+3)×(0+4)}{(0+1)×(0+2)}$]+[$\frac{(1+3)×(1+4)}{(1+1)×(1+2)}$]+[$\frac{(2+3)×(2+4)}{(2+1)×(2+2)}$]+…+[$\frac{(2016+3)×(2016+4)}{(2016+1)×(2016+2)}$]=2026.
(其中[x]表示不超過(guò)x的最大整數(shù),比如[3.2]=3,[6]=6)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知an=log(n+1)(n+2)(n∈N*).我們把使乘積a1•a2•a3•…•an為整數(shù)的數(shù)n叫做“完美數(shù)”,則在區(qū)間(1,2016)內(nèi)的所有完美數(shù)的和為(  )
A.1024B.2003C.2026D.2048

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知函數(shù)f(x)=$\left\{\begin{array}{l}x+\frac{1}{x},x∈[-1,-\frac{1}{2})\\-\frac{5}{2},x∈[-\frac{1}{2},\frac{1}{2})\\ x-\frac{1}{x},x∈[\frac{1}{2},1)\end{array}$.
(1)求f(x)的值域;
(2)設(shè)函數(shù)g(x)=ax-3,x∈[-1,1],若對(duì)于任意x1∈[-1,1],總存在x0∈[-1,1],使得g(x0)=f(x1)成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.函數(shù)f(x)=cos2(x-φ)-sin2(x-φ),其中φ∈(0,$\frac{π}{2}}$),已知f(x)圖象的一個(gè)對(duì)稱中心為點(diǎn)($\frac{π}{3}$,0).
(Ⅰ)求φ的值;
(Ⅱ)在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,若a2+b2-c2=ab,且f($\frac{A}{2}$+$\frac{π}{12}$)=$\frac{\sqrt{2}}{2}$,求sinB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{3}(x+2)+a,x≥1}\\{{e}^{x}-1,x<1}\end{array}\right.$,若f[f(ln2)]=2a,則f(a)等于( 。
A.$\frac{1}{2}$B.$\frac{4}{3}$C.2D.4

查看答案和解析>>

同步練習(xí)冊(cè)答案