20.若角α的頂點(diǎn)與平面直角坐標(biāo)系的原點(diǎn)重合,始邊與x軸的非負(fù)半軸重合,終邊以原點(diǎn)為圓心的單位圓交于點(diǎn)(m,n),且$\frac{n}{m}=-2$,則2sinαcosα-cos2α等于( 。
A.-2B.-1C.$-\frac{1}{2}$D.2

分析 由已知及三角函數(shù)定義求出tanα的值小于0,再由α的范圍,確定出sinα和cosα的值,然后代入計(jì)算即可得答案.

解答 解:由已知條件及三角函數(shù)定義,得到tanα=$\frac{n}{m}=-2$,又α∈[0,π),
∴sinα=$\frac{2\sqrt{5}}{5}$,cosα=-$\frac{\sqrt{5}}{5}$.
∴2sinαcosα-cos2α=$2×\frac{2\sqrt{5}}{5}×(-\frac{\sqrt{5}}{5})-(-\frac{\sqrt{5}}{5})^{2}$=$-\frac{4}{5}-\frac{1}{5}=-1$.
故選:B.

點(diǎn)評 本題考查了三角函數(shù)的化簡求值,考查了任意角的三角函數(shù)定義,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2016-2017學(xué)年河北省高二文上第一次月考數(shù)學(xué)試卷(解析版) 題型:選擇題

下列程序執(zhí)行后輸出的結(jié)果是( )

A.3 B.6 C.15 D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知向量$\overrightarrow{AB}=(2,-1)$,$\overrightarrow{AC}=(-4,1)$,向量$\overrightarrow{BC}$的坐標(biāo)是( 。
A.(-6,2)B.(6,-2)C.(-2,0)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{AB}=(2,-1)$,$\overrightarrow{BC}=(-4,1)$,向量$\overrightarrow{AC}$的坐標(biāo)是( 。
A.(-6,2)B.(6,-2)C.(-2,0)D.(2,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)x,y∈R,向量$\overrightarrow a$=(x,2),$\overrightarrow b$=(4,y),$\overrightarrow c$=(1,-2),且$\overrightarrow a⊥\overrightarrow c$,$\overrightarrow b$∥$\overrightarrow c$.
(Ⅰ)求x,y的值;
(Ⅱ)求|$\overrightarrow a$+$\overrightarrow b$|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=(2x-1)ex的遞增區(qū)間為( 。
A.(-∞,+∞)B.$({\frac{1}{2},+∞})$C.$({-∞,-\frac{1}{2}})$D.$({-\frac{1}{2},+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.三角形ABC中,角A,B,C所對邊分別為a,b,c,已知sin2B+cos2A-cos2C=$\sqrt{3}$sinBsinC,且三角形ABC外接圓面積為4π,則a=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知命題p1:?x0∈R,x02+x0+1<0;p2:?x∈[1,2],x2-1≥0.以下命題為真命題的是(  )
A.(¬p1)∧(¬p2B.p1∨(¬p2C.(¬p1)∧p2D.p1∧p2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.根據(jù)如圖的流程圖,可得的結(jié)果是( 。
A.76B.70C.51D.19

查看答案和解析>>

同步練習(xí)冊答案