8.已知命題p1:?x0∈R,x02+x0+1<0;p2:?x∈[1,2],x2-1≥0.以下命題為真命題的是( 。
A.(¬p1)∧(¬p2B.p1∨(¬p2C.(¬p1)∧p2D.p1∧p2

分析 對于命題p1:由于?x∈R,則x2+x+1=$(x+\frac{1}{2})^{2}$+$\frac{3}{4}$>0,因此不存在x0∈R,x02+x0+1<0,即可判斷出p1的直角.p2:?x∈[1,2],x2-1≥12-1=0.即可判斷出真假.

解答 解:對于命題p1:由于?x∈R,則x2+x+1=$(x+\frac{1}{2})^{2}$+$\frac{3}{4}$>0,因此不存在x0∈R,x02+x0+1<0,因此p1是假命題;
p2:?x∈[1,2],x2-1≥12-1=0.因此是真命題.
以下命題為真命題的是(¬p1)∧p2
故選:C.

點評 本題考查了函數(shù)的性質(zhì)、不等式的性質(zhì)、簡易邏輯的判定方法,考查了推理能力與計算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.二分法是求方程近似解的一種方法,其原理是“一分為二、無限逼近”.執(zhí)行如圖所示的程序框圖,若輸入x1=1,x2=2,d=0.05,則輸出n的值為( 。
A.4B.5C.6D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.若角α的頂點與平面直角坐標(biāo)系的原點重合,始邊與x軸的非負半軸重合,終邊以原點為圓心的單位圓交于點(m,n),且$\frac{n}{m}=-2$,則2sinαcosα-cos2α等于( 。
A.-2B.-1C.$-\frac{1}{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.給出下列四個命題:
(1)p∧q(2)?p(3)p∨q(4)(?p)∨q
若這四個命題中只有一個是真命題,則這個真命題的序號是(  )
A.(1)B.(2)C.(3)D.(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.△ABC的內(nèi)角A、B、C的對邊分別是a、b、c,已知(a+b+c)(b+c-a)=bc,則角A的度數(shù)等于( 。
A.120°B.60°C.150°D.30°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在平面直角坐標(biāo)系中,橫、縱坐標(biāo)均為整數(shù)的點叫做格點.若函數(shù)圖象恰好經(jīng)過k個格點,則稱函數(shù)為k階格點函數(shù).已知函數(shù):
①y=sinx;  ②y=cos(x+$\frac{π}{6}$); ③y=ex-1;  ④y=x2
其中為一階格點函數(shù)的序號為( 。
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.設(shè)銳角三角形ABC的內(nèi)角A,B,C的對邊分別為a,b,c,且a=2bsin A.
(Ⅰ)求角B的大。
(Ⅱ)若a=$3\sqrt{3}$,c=5,求△ABC的面積及b.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在極坐標(biāo)系中,圓C的方程為ρ=4cosθ,以極點為坐標(biāo)原點,極軸為x軸的非負半軸建立平面直角坐標(biāo)系,直線l經(jīng)過點M(5,6),且斜率為$\frac{4}{3}$.
(1)求圓 C的平面直角坐標(biāo)方程和直線l的參數(shù)方程;
(2)若直線l與圓C交于A,B兩點,求|MA|+|MB|的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.直線3x-4y+1=0與3x-4y+7=0的距離為$\frac{6}{5}$.

查看答案和解析>>

同步練習(xí)冊答案