8.log52•log425等于(  )
A.-1B.$\frac{1}{2}$C.1D.2

分析 根據(jù)對數(shù)的運算性質(zhì)計算即可.

解答 解:原式=$\frac{lg2}{lg5}$•$\frac{2lg5}{2lg2}$=1,
故選:C

點評 本題考查了對數(shù)的運算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.關(guān)于實數(shù)x,y的不等式組$\left\{\begin{array}{l}x≤4\\ y≥2\\ x-y+2≥0\end{array}\right.$所表示的平面區(qū)域記為M,不等式(x-4)2+(y-3)2≤1所表示的區(qū)域記為N,若在M內(nèi)隨機取一點,則該點取自N的概率為( 。
A.$\frac{π}{16}$B.$\frac{π}{8}$C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,EA⊥平面ABC,DB⊥平面ABC,△ABC是等邊三角形,AC=2AE,M是AB的中點.
(Ⅰ)求證:CM⊥EM;
(Ⅱ)若直線DM與平面ABC所成角的正切值為2,求二面角B-CD-E的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.某工廠修建一個長方體無蓋蓄水池,其容積為6400立方米,深度為4米.池底每平方米的造價為120元,池壁每平方米的造價為100元.設(shè)池底長方形的長為x米.
(Ⅰ)求底面積,并用含x的表達式表示池壁面積;
(Ⅱ)怎樣設(shè)計水池能使總造價最低?最低造價是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.如圖,A,B是以點C為圓心,R為半徑的圓上的任意兩個點,且|AB|=4,則$\overrightarrow{AB}$•$\overrightarrow{AC}$=(  )
A.16B.8C.4D.與R有關(guān)的值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知平行六面體ABCD-A1B1C1D1中,以頂點A為端點的三條棱長都等于2,且兩兩夾角為60°,則對角線BD1的長度為( 。
A.$2\sqrt{2}$B.$\sqrt{2}$C.$2\sqrt{6}$D.$\frac{{\sqrt{3}}}{2}+2$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知雙曲線$\frac{x^2}{m}+{y^2}=1$的離心率是$\sqrt{2}$,則實數(shù)m的值為( 。
A.-1B.-2C.-3D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知一扇形的圓心角是60°,弧長是π,則這個扇形的面積是( 。
A.B.$\frac{3π}{2}$C.D.$\frac{3π}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)$f(x)=\sqrt{3}sinxcosx+2{cos^2}x-{sin^2}x$
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若$f(α)=2,α∈[{\frac{π}{12},\frac{5π}{12}}]$,求cos2α的值.

查看答案和解析>>

同步練習(xí)冊答案