【題目】在極坐標(biāo)系中,直線l:,P為直線l上一點,且點P在極軸上方以OP為一邊作正三角形逆時針方向,且面積為.
求Q點的極坐標(biāo);
求外接圓的極坐標(biāo)方程,并判斷直線l與外接圓的位置關(guān)系.
【答案】(1) ;(2)直線與圓相外切.
【解析】
直接利用轉(zhuǎn)換關(guān)系,把參數(shù)方程直角坐標(biāo)方程和極坐標(biāo)方程之間進(jìn)行轉(zhuǎn)換.
利用一元二次方程根和系數(shù)的關(guān)系求出結(jié)果.
由題意,直線l:,以OP為一邊作正三角形逆時針方向,
設(shè),由且面積為,則:,得,所以.
由于為正三角形,所以:OQ的極角為,且,所以
由于為正三角形,得到其外接圓的直徑,
設(shè)為外接圓上任意一點.
在中,,所以滿足.
故的外接圓方程,
又由直線l:和的外接圓直角坐標(biāo)方程為.
可得圓心到直線的距離,即為半徑,故直線與圓相外切.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)的定義域為
(1)當(dāng)時,求函數(shù)的單調(diào)遞減區(qū)間.
(2)若恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校為研究學(xué)生語言學(xué)科的學(xué)習(xí)情況,現(xiàn)對高二200名學(xué)生英語和語文某次考試成績進(jìn)行抽樣分析.將200名學(xué)生編號為001,002,…,200,采用系統(tǒng)抽樣的方法等距抽取10名學(xué)生,將10名學(xué)生的兩科成績(單位:分)繪成折線圖如下:
(1)若第二段抽取的學(xué)生編號是026,寫出第六段抽取的學(xué)生編號;
(2)在這兩科成績差低于20分的學(xué)生中隨機(jī)抽取2人進(jìn)行訪談,求2人成績均是語文成績高于英語成績的概率;
(3)根據(jù)折線圖,比較該校高二年級學(xué)生的語文和英語兩科成績,寫出至少兩條統(tǒng)計結(jié)論.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
當(dāng)時,求函數(shù)的單調(diào)增區(qū)間;
若函數(shù)在上是增函數(shù),求實數(shù)a的取值范圍;
若,且對任意,,,都有,求實數(shù)a的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)a為何值時,x軸為曲線的切線;
(2)設(shè)函數(shù),討論在區(qū)間(0,1)上零點的個數(shù).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,側(cè)棱底面,且,過棱的中點,作交于點.
(1)證明:平面;
(2)若面與面所成二面角的大小為,求與面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,設(shè)橢圓的左、右焦點分別為F1,F(xiàn)2,上頂點為A,過點A與AF2垂直的直線交x軸負(fù)半軸于點Q,且0,若過 A,Q,F(xiàn)2三點的圓恰好與直線相切,過定點 M(0,2)的直線與橢圓C交于G,H兩點(點G在點M,H之間).(Ⅰ)求橢圓C的方程;(Ⅱ)設(shè)直線的斜率,在x軸上是否存在點P(,0),使得以PG,PH為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;如果不存在,請說明理由;(Ⅲ)若實數(shù)滿足,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】古印度“漢諾塔問題”:一塊黃銅平板上裝著三根金銅石細(xì)柱,其中細(xì)柱上套著個大小不等的環(huán)形金盤,大的在下、小的在上.將這些盤子全部轉(zhuǎn)移到另一根柱子上,移動規(guī)則如下:一次只能將一個金盤從一根柱子轉(zhuǎn)移到另外一根柱子上,不允許將較大盤子放在較小盤子上面.若柱上現(xiàn)有個金盤(如圖),將柱上的金盤全部移到柱上,至少需要移動次數(shù)為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在極坐標(biāo)系中,曲線的方程為,以極點為原點,極軸所在直線為軸建立直角坐標(biāo),直線的參數(shù)方程為(為參數(shù)),與交于,兩點.
(1)寫出曲線的直角坐標(biāo)方程和直線的普通方程;
(2)設(shè)點;若、、成等比數(shù)列,求的值
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com